CORTEX USERS GROUP

| MDEX forthe CORTEX

USER MANUAL

(C) MicroProceussor Engineering Liad. — January B84

ST

]

.

Microprocessor Engineering Limited
21, Hanley Road, Shirley, Southampton, S01 5AF
07Q3-775482

MDEX for the Cortex - User Manual

Rev 1.7

(C) MicroProcessor Engineering Ltd. - January 84

[)] Ti 0

_

—_ L —
T

Microprocessor Engineering Limited
Z21. Hanley Road. Shirley, Southampton. S01 S5AF
” 0703-775482

MDEX for the Cortex - User Manual

CONTENTS

1. Introduction cececccscasesscasenccnnns ceesesacas 1
2. Starting out ‘eesessacenceene cecenrccccnccssaneanaaa 1
Z2.1. Loading the operating systemcccecccecccacncneane 2
2.2. Copying diSCS ..ccetearecenccscsccsccnascascsncscncsannne &
2.2.1. Copying discs using DUcccccceeuanc.. ccecrerna 4
2.2.2. Copying discs using COPYccecreerccccans erees. 4
2.3. Seeing what you’ve got. ceecseccaccene ceans 4
3. Operating differences from the normal Marinchip MDEX .. 4
4., Creating a working disCecccccecaan ceesrcacaaaan cee. O
S. Disc Formatter - FORMAT neesaacseasesannenne ca. 9
&. CAT disc directory program et ee et iaaaea e]
7. COPY file transfer utility cescaasrscesecnan seeea T
8. Boot files i ccrcanancencans e e caem e e &
9. Terminal contraol codes ecsavsoenenmcecnecanns 1)
10. Using the serial port for a terminal e 6
11. Modifying device drivers e e ee et aae s 7
12. Double—sided disC ArivesSccceeacecaaccacecnoscencens 9
1X. Common disC problemscc.icieiieeiacsecnanaancanss 10
14. Miscellanyottt m. i icecncacasucnoscseasacanancnacenes 10
15. Technicalities and leqgalitiescccuc.c.icnannoas 11

——

1.

)

L -

MDEX for the Cortex -- User Manual - Rev 1.3 - January 84

Microprocessor Engineering Limited
21, Hanley Road, Shirley, Southampton, S01 SAP
0703-775482 . >

January 84

Introduction

The Marinchip Disc Executive (MDEX) is a disc operating
system for small computers based around any of the 99xx (x)
range of processors. It has been running in commercial
service since before 1978. 1t is supplied with many useful
tools and utilities, and many purchasers who have bought the
complete package will no software other than that which comes

wnith MDEX. Users who have bought MDEX in its unbundled form

will find alternate procedures documented here as required.

MicroProcessor Engineering has now converted MDEX to run on
the Powertran Cortex. Because the system originally ran with
8" disc drives, a 24 x 80O VDU, a parallel printer. and an
S—-100 erate (Marinchip were the first manufacturer to run a
true 16-bit system on the S-100 bus), there are some

‘differences and changes to the system that 1is described 1in
the Marinchip documentation.

The aim of this section 1s toc 1ntroduce you to the svstem,
show you how to get started, and to persuade you not to panic
when all seems to be lost. It 1sn’t lost - you just don 't
know where it i1s, or where ynu went afterwards.

READ ALL OF ME FIRST

St.rting out

Operating systems are here to make vour life easy - they are
tools, and take a little bit of getting used to. The reason
for having an operating system 1s that having to remember how

-the bhardware works every time you want to write a program is

a bore. So we write a set of programs which are loaded into
the computer before any other programs are run. This first
set contains programs and subroutines which look after and

control the hardware. As well as meaning that you don’t have
to remember how the hardware works., 1t now becomes easy to
change the hardware. as the only software that has to be

changed is in the operating system, not 1in vour carefully
crafted programs. 1¥ vou write a program to run on the Cortex
using MDEX 11t will run unchanged on any Marinchip system.

?C

:_) R
jf.i. Loading the operating system

|

MDEX for the Cortex - User Manual - Rev 1.3 - January 84

Obviousiy there will be changes for things the operating
system cannot control, such as the type of terminal used, but
these changes are usually very easy.

?

Before any of your pragrams can be run we must first load the
operating system itself. Rather than doing this from tape, we
can do this from a disc. Throughout this manual, we assume
that you are a using a Cortex with two 3" disc drives.
Operation for other versions is very similar.

You should have at least two discs with the the MDEX package.
One is called the "boot disc", and the second is called the
"svstem disc". There will also be one or two other discs,
but they will be labelled System Generation Kit or SGK - you
will not need them until later, if at all.

Go out and buy a box of discs for double density use. If vou
insist on using the system before you have copied the discs
we sold you — on your head be it - don’t say we didn’t warn
you. The only discs we stake our life on are made by DYSAN,
they are worth the extra money. Cheap discs will at best make
the disc heads dirty, and at worst ruin discs and drives.
After loading the operating system you should copy the discs
— read on for instructions.

The reason for this heart-stopping warning 1is that 1if vyou
ruin the the discs we sent you BEFORE you copy them, vyou
won’t be able to play until after vou have admitted this to
us, and obtained a new set of discs; BUT if you have copied
the discs., all vyou have to do is make another set. and gaily
start again.

WHEN ALL ELSE FAILS - READ THE INSTRUCTIONS

You will have realised that the most dangerous part in the
whole exercise is getting as far as copying the discs. This
part even causes prafessionals to twitch erratically. Terror
subsides in the face of knowledge, and the first important
fa~t.1s that disc drives will not write onto the disc if the
disc is "write protected”. On S" discs there is a notch to
the right of the label on the right hand edge of the disc
jacket. If this notch i1s uncovered, take a little sticky bit
out of your new box of discs and cover up the notch. The disc
is now write protected. Do this with the other discs. On 8"
discs the notch 1s on the bottom edge., to the right - 1t must
be uncovered to write protect the disc. You didn’t think that
computing would really be anv different. did you 7

The only way vyou can ruin the disc now 1s to turn the
computer on or off with the disc in the machine, or to stick
vour fingers on the magnetic part of the disc and make it
dirty.

The Basic supplied 1n EPROM with the Cortex copies itself
into RAM at power up, and then turns the EPROMs off. One of

L] MDEX for the Cortex - User Manual - Rev 1.3 - January 84

program from the disc and runs 1t. As MDEX uses this same
part of the disc for something else., you will have to tke the
first disc out, and replace it with another disc that
actually has MDEX on it, and the little program loaded by the
‘'BOOT” command will then load MDEX itself into the Cortex.

i} the Basic commands 1s BOOT’. This command reads a little

T
—

o So. place the disc labelled ’boot disc’ into the left-hand
‘} disc drive (label upwards and nearest you). Type *BOOT’, the
) diec drive light will come on, and the go out after a second
. or two. 1f the light does not go out - have vou closed the
Tl digc drive door 7 - 1f not close it. If the light still does

not go out, open the door, take the disc out, and press the
reset button on the back of the Cortex. The most likely
reason for failure is that the links on the board are not set
for booting a single density 5" disc.

—

—

Eventually, the disc light will go out a few seconds after
you typed *BOOQT’. The little program that actually loads MDEX
has been fetched from the disc, and is running. 1lt is waiting
for you to change discs.

]" R "

So, open the disc drive door. take out the *boot disc’,
replace it with the ’system disc”, and shut the door again.
Now place a blank disc in the right hand drive, and shut its
door. Fress any key, lights will light, and if all goes well
there will be a message on the screen. If there isn’t. check
that vou did have the ’svstem disc’ in the left hand drive.

If you got the sign on message - MDEX 1s running. ¥ vou
can’t get anything to bappen read this section again., try
again and 1 f all else fails contact MFE.

M
—

. Copying discs

N

The boot disc has been recorded in single density format. and
the system disc is in double density format (you can get
[twice as much on 1t}). To make the copies you must format your
(} new discs, one in single density, ocne in double density. On
- 8" systems both discs are in single density.

Leave the system disc 1n the left hand drive and type FORMAT
to call up the disc formatting program. There is a section of
the manual about the disc formatter later on. READ 1t.
Format at least two new discs, one in single density for the
boot disc, and one 1n double density for the svstem disc.

The +ormatted discs are naow usable but first must have a new
directary written on them. Without this. the operating system
will not know how to use the disc. The command to prepare a
new directory i1s FREF, but first read the section on FREF 1in
the Marinchip documentation. In practice the boot disc does
not need the FREF procedure. To prep a disc in drive 2 for
double density use type PREF 2/.DD7cr> and to prep & disc for
?J double sided double density use type FREFP 2/,DS,.DD<cr>. For
single sided single density iust type FREF 2/<cr .

‘ You now have two formatted and prepared discs. Copying

; ; |
. MDEX for the Cortex .- User Manual - Rev 1.3 - January 84

information from one to another is easvy. There are two
W(methods of doing this. The one described here 1is only
Gb applicable if you have bought the full version of MDEX, if
*l vou have not vou must use the COPY utility.
2.2.1.

. 2 Copving discs using DU

£
1 Type DU to get the disc utility. As the system disc is
already in the left-hand drive and is in double density
format, place a double density disc in the right
1 and now type CD 1 2. This tells the disc utility to copy all
w the data on disc 1 onto disc 2. Remove both discs, and label
the new one using a sticky label from the box, and a felt-tip
r pen. DO NOT use pencil or biro. Insert the boot disc in the
%} left bhand drive and a single density disc in the right hand
- drive and again type CD 1 2. If you are really cautious vyou
- will now make another set of copies, as the learning period
i? is the one in which are most likely to need to use the issue
‘ discs or their descendants.

‘}Gﬁ‘ Now put the issue discs (the ones we sent you) away in a safe
DA place and do not use them for anything except getting
vourself out of a hole. If you value the work you do on this
- machine and will qget upset if your discs are corrupted, do
LI buy quality discs - they last longer and don"t clag up the
heads on the disc drives. It is not often that we recommend
, products. but if you can afford them, do use Dysan discs for
f} those working discs that will get & lot of use.
(

2. Copying discs using COFRY

1
Ll The COFY utility is described

to copy discs from one drive to another place a formatted and
e PREPped disc in drive 2, the disc you want toc copy from 1in
! I drive 1 and type COFY 2/=1/%x.%{cr> to perform the copy.
) Answer Y<cr > 1n response to the question ’'Auto—-create enable

—

7?7, and all the files on drive | will be copied onto drive 2.

r
;l.ﬁ. Seei1ng what youw ve qot.

{’C” You can find out what is on the discs by typing CAT (for
L cataloq).

wT. Operating differences from the normal Marinchip MDEX

1

|

o All the differences between MDEX for the Cortex and for other
) machines stem from the Cortex having a 40-column screen., and
LS all the other systems have 64 or B8O column screens. Some
: programs and utilities become less easy to use because of

thys, and have been re-written. The disc directory utilityv
I DIR assumes an 80-column screen, so we have provided vou with
NJ CA7T. The disc formatter. FORMAT, is unique to the Cortex
because i1t is hardware dependent.

MDEX for the Cortex -~ User Manual - Rev 1.3 - January 84

{} Creating a working disc

e

! | ;’¥‘ w‘}

e

1
J

DiecC

We have found that the easiest way to work 1s with all the
tools you need on one disc, and the iob itself on another.
After vou have FORMATted. and PREFped a working

‘Bntoxit (see Marinchip documentation for TCOPY and BCOPY) the
following files: SHELL$.0BJ, TCOFY, and CAT. You will soon
add to this list a few utilities that you use all the time
when copying new files onto your job discs, and consequently
vou have to remove the system disc.

Formatter - FORMAT

FORMAT was written as a general purpose disc formatting tool,
and can be wused to generate many different formats. Type
FORMAT to load the program (the cowardly then remove all
discs except the one to be formatted). FORMAT then asks you a
set of questions about the disc format required.

. Cortex internal drives are 5". 40 track (80 track on D’

models), 16 sectors/track, and 128 bytes/sector (256 in

‘"double density). D> models have double-sided drives. in

order ta format double-density discs answer Td’ to the
density question, and select 256 bytess/sector. Again, please
note that FORMAT 1s a general purpose program which will
format discs to run on many different machines. For use with
MDEX, discs must be FREFped (prepared) to write a blank
directory onto the disc.

The larger 8" drives differ in having 77 tracks of 6
sectors. :

I+ vou need special formats for any reason contact us for a
custom version of FORMAT.

CAT disc directorv program

Cory

As the disc directory command DIR assumes an BO-column screen
we have written a new program CAT to provide a - catalogue of
what is on the disc. Ensure that CAT 1s on the disc in drive
1, type CAT, and then tell CAT which drive vou need a
directorv listing for.

file transfer utilaity

This pragram 1s not a Marinchip product but has become part
of the svstem. It 1s a general purpose file transfer program,
and 1ts great virtue under MDEX is that 1t will create its
own files. A second virtue i1is that 1t will accept an asterix
X7 as a wild card. so0 that the command - copy 2Z2/%.%x=1/%.% -
will copy all the files on drive 1 onto drive 2, and will
automatically create the files 1if vyou answer y to the
question TAuto-create enable (Y/N) ©°

There are several forms of the copy command: -
CORPY 2/=1/%.% will copy all the files on drive 1 onto drive 2
COPY Z2/%.3%3=1/%_% 15 like the previous example

NIRRT g S e

—

8.

10,

Boot

MDEX for the Cortex - User Manual - Rev 1.3 - Januarv 84

COPY 2/=1/FRED.ASM will only copy the file FRED.ASM +from
drive 1 onto drive 2

COFY 2/=1/FRED.% will copv all files called FRED with any
extension to the filename

COPY 2/=1/%.ASM will copy all files with the extension ASM

files

The secondary boot program (on track O of the boot disc) has
been rewritten so that it will boot from single or double
density discs. The source of this program is provided as part
of the System Generation Kit, and the linked output is
provided as SBOOT.S5S for single sided, and SBOOT.SD for
double sided disc drives. There are several other files named
BOOT.i jkl, where i and j refer to the size and sides of drive
1, and k and 1 to the size and sides of drive 2. To generate
an operating system with these new characteristics, copy the
desired file into BOOT$.SAV (on a fresh disc'), and re-boot
using the rew disc.

Terminal control codes

On the Marinchip development system at MFE, the terminal is a
Televideo 920C. When we moved MDEX to the Cortex. we used the
same control codes to perform certain functions on the Cortex
screen. Thus an application program should treat the Cortex
screen as if it i1s a TVI-920C terminal.

Not all the codes are implemented. but the ones described
below are 1i1mplemented. Customers who have also bought the
System Generation Kit (SGK), will be able to add extra codes
as required. '

function character sequence code (s)

bell control-G6 Q7

cursor left control -H/backspace 08

cursor down control—-Jd/line—feed OA

cursor up control -K OB

cursor right control-L als

home cursor control-~ or 1€

clear screen ESC + or ESC Z 1B. B or 1R.5A
or control-Z 1A

clear to end line ESC 71 1B. 54

clear to end screen ESC Y 1B, 59

gotoxy ESC = y-pos x-pos 1B, 3D, y+20, x+20

Usi1ng the serial port for a terminal

The operating system as delivered uses the Cortex screen and
keyboard as the terminal. When the operating system signs on
the serial port is initialised to 9600 baud. and the cassette
port 1is initialised to 1200 baud. By changing various flags
within the operating system, vour programs can arrange ¢to
switch between using the keyboard and the serial port to
receive data, and between the Cortex screen and the serial
port to display data.

MDEX for the Cortex - User Manual - Rev 1.3 - January 84

These flags are 1in what is called the “unit table’ for the
terminal. See below for a description of the unit tables.

fvying device drivers

If you need to perform permanent changes to the operating
system we recommend that you use the System Generation Kit to
modify the device drivers (the bits of the operating system
that control the hardware). For small changes or in
particular for changing the behaviour of the screen and
kevboard, the changes can be wmade from an application
program, or by using the Debug Monitor. '

Each device - terminal. two disc drives, and printer - is
described to the operating system by a unit table, and within
limits these can be modified by a user.

The easiest way to experiment is to use the Debug Monitor to
examine and/or alter the contents of these tables. Tvpe
DEERUG<cr > to load the debug monitor, and when vyou have
finished use GCOU8 to reinitialise the MDEX operating system.
Address (CO008 is the cold start entry point of this issue of
MDEX. To check it look at the first sector of BOOT$.SAV using
DU. In this sector are three words which define the file’s
wokspace, entry point. and length.

Sections of code are given from each of the drivers to show
how to address them. Each item uses two bytes at an even
memory address. False 1is indicated by a 0 in the location,
and true by non-zero.

The address of the start of the table can be found at fixed
locations - although the table addresses. may (and will)
change as MDEX is modified, they will always be found at the
fixed 1locations in 1low memory. These pointers -are onlv
available on MFE’s versions of MDEX for the Cortex - they are
not available on other implementations.

hexadecimal points to controls

addr ess table name device tvpe
OFE ut$con terminal /screen
QFC utsfdil disc drive 1
OFA utsfd2 " " 2
OF8 utsprt printer

Your discs should be backed up before vou start experimenting
with these tables, there i1s no protection and if you get it

wrong the results may be unpredictable - sometimes rather
unpleasant. In particular do not change the bytes/sectar of
the discs from 128 - unblocking routines are not fitted.

Disc unit table

The following cells occur for all units

dtmstr
dtselb
dtcurtrk
dtprect
dtmfm
dthd
dtbytsec
dtsectrk
dttrksrf
dtsizet
X
lernslave
x

£

x

X

dtdeva
dtbuff
dtsvbu+f
dtdtrk
dtdhead
dtdsec
dtmema
dtmeml
dtcfunc
dtretrvc
dtodtrk
dtodhead
dtodsec
dtoemema
dtomeml
dtdmam
dtsto
dtempl
dtempl
dtr bw
dtrvrtryv

lenmaster

b 4
X
4

conbeq

3
dtmaster
dteerip
dtserap
dtcruser

dtbaudser

b
may.col

MDEX for the Cortex - User Manual - Rev 1.3 - January 84

dorgqg O

equ +

bss P link to first unit on controller
bss 2 select bits for this unit

bss 2 current track position

bss 2 precession table

bss 2z nonzero 1f last /0 was d/density
bss 2 nonzero if d/sided disc mounted
bss 2 bytes/sector (single density)
bss 2 sectors/track

bss 2 tracks/cyl inder

bss 2 non-zero for 8" drives

equ s—master

The following cells exist only in the control table for the
first unit on the controller.

bss 2 device address

bss 2 DMA buffer address

bss 2 save sector buffer

bss 2 desired track number

bss 2 desired head number

bss 2z desired sector number

bss 2 memory buffer address

bss 2z memory buffer length in bytes
bss 2 current function save

bss 2 retry countdown cell

bss 2 ariginal desired track

bss 2 original desired head

bss 2 original desired sectar

bss 2 original memorv start address
bss 2 original memory length

bss 2 DMA mode

bss z fdc status

bss z temporary cell 1

bss 2 temporaryv cell 2

bss 2 read beftore write done f1lag
bss 2 read verify retry count

equ $-master

rorg

unit definition table for terminal .

dorg 0

equ $

bss 2 link to master conscle

bss 2 1 for serial i/p, O for parallel
bss 2 1 " * o/p, O “ "
bss 2 cru address of serial 9962

bss 2 timer value for serial tx/rx
bss 2

characters/row

& L MDEX +or the Cortex User Manual - Hev 1.3 -~ January 84

giia,row bss z rows/screen
Poal pos bss <z ma) chars/screen {(maxcaol smaxecrow)
[S pos, bss < current cursor position
S sor on bss P cur sor required flag; Ll=on
- lavecursor bss 2 temp storage
‘esccount bss 2 nth character i1n escape sequence
e2scchar bss 2 second char 1n escape sequence
- |ewrow bss 2 new row from esc = sequence
“riewcol bss 2 new column from esc = sequence
%
f‘oﬁlen equ $—-conbeg length of definition table
- rorg
X
(} Frinter control table
' dorg U
j}rdvad bss 2 printer device address
prcrdly - bss 2 carriage return delay time
prautolf bss 2 cr does lf 1f nonzero
| Irvpaos bss 2 vertical position 1n pege bodv
L rffdly bss z form feed delay time
prbody bss 2 page bodv length
rtop bss 2 lines at top of page
[\rminl bss z minimum li1ne length
Lprhpos bss z hori1zontal carriage pos:tion
Sl fdly bss s line feed delay
Clrffsim bss 2 simulate form feed 1f nonzero
‘orbot bss 2 lines in bottom margin
¥
(] rorg
|
{
12 Double—-sided disc drives

[.

il if you have a machine with 8" deuble-sided discs, ensure that
) the Cortex can use the signal from the drive ("two-sided")
that indicates whether or not the disc in the drive 1is &

ez double-sided disc. Without this signal. MDE X can’t

s distinguish between single and double-sided discs. This

B signal is not provided on the FCB.

uJ Machines supplied bv MFE with double-sided drives will have
been modified and supplied with MDEX configured to use both

{W sides ovui the disc. If you have to modify the Cortex. here
) are the 1nstructions:- ‘

1) Connect a link between the two--sided signal line on the
R : floppy-disc connector to IC 63 pin3 (ET1 numbering). This is
LJ a 74LS251 used as an 1nput port. The two-sided signal 15
usually to be found on pin 10 of the S0-pin connector for 38"

J drives, and is not defined for S" drives.
! 2) Install a 1S50R pull-up resistor between IC 63 pin 3 and
+5v (IC 63 pin 16). This provides for termination of the

X) 1If¥ you have an early version of MDEX for the Cortex. and
are converting {trom 40 track drives, MDEX may naot support
double-sided drives. In this case use the Svstem Generatio
‘1 Kit (SGK) to add the required code to the disc drivers, or

i (signal from the drive.
|
[—

—
A

——

1
;

MDEX +0or the Cortex - User Manual - Rev 1.3 - January 84

contact MFE to obtain the update.

Comman disc praoblems

Sone people have had trouble in getting MDEX running. This 1s
usuallv caused bLy hardware faults that can easily be
corrected.

Ensure that the side select line is connected to the S" disc
connector. On some issues of the Cortex main PCE, the side
select line exicsts on pin 14 of the 8" (50 way) disc drive
connector, but not on pin 32 of the S" (34 way) connector.
Double sided S systems will load the boot disc, but not the
svetem disc 1f this link is not made. '

In the phase lock loop section of the disc controller are
three resistors which control the time pericocd of a monaostable
used i1n the disc read circuitry. These are labelled R68.6%9,7Q
on our circulit diagram, page Al7. The original values were

47, 10k, and 18k. More recent machines are fitted with 2k7,
Sk, and 12k. The 3St6 value 13 a compromise between the
values required for S" double density and 8" single density
use. For S“ discs this value can often be reduced. Several

users have reported optimum results using 3k? or 3ké6 1n this
position.

The disc drives must be correctly configured. There are
severai banks of switches on maost drives. For S" drives
ensure that the drives are selected using DS¢ and DSl as
drives 1 and 2 respectively. Note that on anv one drive only
one of DSO-3 must be closed. Only one of the switches
labelled HS and HM should be closed. These switches are wused
to select whether the head is loaded onlv when the drive is
selected (noisy), or whenever the motor 1s turned on (leaves
the heads down longer). In general set HM and have a quiet
life. Usuallyv there is a switch called MX which should be
left open. These switch settings are not guaranteed for all
drives, but are the settings we use first when we get a tvpe
wf drive we have not used before. ’

We have had ao trouble with the TEAC drives, the 355F type
being very economical as a high storage capacity drive.

Use with 8" double density is often difficult.

Miscellanv

This section contains odds and sods of information which we

find useful, but won’t fit easilQ into the rest of the

documentation without a lot of work.

The file SHELL$.0BJ contains a collection of programs like
DIR and CREATE, and so must be present in drive 1. Unlike
other disc-resident commands, you cannot use these commands

by putting SHELL$.0BJ on drive 2, and then typing 2/CREATE
etc.

File copying is quicker with BCOPY than with TCOPY, and

MDEX tor. the Cortex ilser Manuwai - Rev 1.5 - Januwary 84
easiest with (Y.

The assembler error messages are somewhat terse., and can be

the result of previous errors, rather than an error on the.

current l1ne. In particular. farlure to use EVEN after a
TEXT statement can leave the location counter at an odd
address. This will cause an error 1n the next executable
instruction. If the assembler cannot open a ‘copy’ file, you
mav well get an error message on the next line.

New discs do not have to be iogged i1n. but do not change
discs while a fi1le 15 being uised by a program. The operating

system w1l detect the disc tharacteristics (single/double
density, s1ngle/double sided’) when the directory 1s read at
track 0 sector 1). Automatic single/double sided disc

selection can only be performed when wusi1na drives with a
two—-sided signal connected tc a fortex/FF95 wmoditied as
described previously. When using the disc utilitv DU, you
must read track O sector 1 1f vou change the type of disc 1in
a drive.

Technicalities and legalities

MDEX 15 issued on a single machine licence. This means that
you are only supposed toc run 1t on one machine. 0Of course vyou
can mave as many back-up coplies as you like. but you are not
allowed to pass it on. Eecause some people mav need to run
MDEX on more than one machine. further copies may be
purchased at a reduced rate. Contact us for these prices.

The greater part of the purchase price of MDEX (and all the
other Marinchip software) goes to people who put 1n a lot of
time to generate and support this software. Marinchap A @
Joad people and deserve their money. -

We lite ta thank that we deal fairlyv with vou. our customers.
¢ vou aqgree that we are dealing +#airly with vou, | hope vou
will be fair to us bv respecting the copvrights on our
software. and bv not maling copies tar others.

PSS SUINNERIC RS

CORTEX USERS GROUP

MDEX USER GUIDE -1

by John Walker

‘Marinchip Systems

Mill Valley, CA 9?941

wwwwwwwwwwwwwwwwwwwc NNNNNNNNNNNNNNNNNNNNNN

Marinchip 9900 Disc Executive User Guide
Table of contents

Introduction

Using the system from a terminal
2.1. Loading the system
The file system
1. Disc files
.2. Device files
3 Common fille nomenclature

.2.
2
2
2
3 User console commands

.3.1. JUMP - Activate program in memory
.4 Console support

.4 console input

.4 . Line delete :

4q . Character delete

.4

1
2
3. Word delete
.4.1.4. Retype input line
.4 S. Expansion of control characters
.4.1.6. Escape input

.4. Console output

.4.2.1. Output pause

.4. Console interrupt

.5. Printer support

.5.1. Page formatting

.5.2. Printer pause character

.5.3. Console output to printer

.6. Unformatted disc support

sing the system from a program

System calls

Program execution environment
.1. Memory allocation
.2. Initial workspace

i

.

.1.1. Process control

L1.1.1. EXITS (02) Terminate process
.1.1.2. TRAPS (OE) Reset interrupt action
.1.1.3. MEMS (OF) Determine memory limits
.1.1.4. EXECS (11) Execute a program

1.2. File control

1.2.1. OPENS (0S) Open a file

1.2.2. CLOSES (06) Close a file

.1.2.3. DELETES (09) Delete a file

1.3. Input/Output

1.3.1. READS (0B) Read from a file

1.3.2. WRITES (0C) Write to a file

1.3.3. SEEKS (0D) Set file address pointer
1.3.4. IOCTLS (10) Set file modes

1.4. System call error codes

2.

2

2

| R S S S S|

Marinchip 9900 Disc Executive User Gulide

Table Oof contents

w

Program parameter string

Floating point emulation

.1. AES (01) Floating add

.2. SES (02) Floating subtract
.3. MES (03) Floating multiply
.4. DES (04) Floating divide
.5.
S

-— e b b b

CES (05) -.Floating compare
ystem subroutines
Calling sequence conventions
Output editing package
Edit mode
EDITS - Enter edit mode
EDITXS - Terminate edit mode
EDITRS -~ Re-enter edit mode
The column pointer
ESKIPS - Position column pointer relative
ECOLS - Position column pointer absolute
ECOLNS - Retrieve current column number
Character editing
ECHARS - Store single character
ECOPYS - Copy character string
EMSG1S - Copy string to stop character
Message editing
EMSGS - Start message editing
EMSGRS - Continue message editing
Nnmeric editing
EDECVS - Variable length decimal edit
EDECFS - Fixed length decimal edit
EHEXVS - Variable length hexadecimal edit
EHEXF S - Fixed length hexadecimal edit
Sample use of the editing package .
torage and linked list subroutines

wWN =

LI] e o o o o e o o . o » .
wNn =

[(SE SN N SHSH SN ON SN SN SN SN SN SE SR SR SN SN SN SN SNSN S

NONOONONODEABWWWWNNNN = ===
M—‘ wWN =

(ﬂ(ﬂ(ﬂ(ﬂ(ﬂw(ﬂ(ﬂ(ﬂm(ﬂ(ﬂbbbbbhbbhbbbbbbbbhhbbbbbwwwwwwlo

DW=

.5.1. Dynamic memory allocation routines
.5.1.1. BEXPS - Add space to buffer pool
.5.1.2. BGETS - Allocate a buffer: error 1i1f none
.5.1.3. BGETAS - Allocate a buffer: return 1f none
.5.1.4. BRELS - Release buffer
.5.1.5. Buffer allocation errors
.2. Linked list routines
.5.2.1. INITQS - Initialise queue links
.5.2.2. INSERTS - Insert buffer at queue end
.5.2.3. PUSHS - Insert buffer at queue start
.2.4. REMOVES - Remove next buffer from queue

ystem utility programs

.1. ASM - Assembler
.1.1. Calling the assembler
.1 2. For more information

nbnbnbm wwwuwwwwwwwwwwwwwwwuwwwwwwwwwwuwwwwwwwwuuww

11

-19
=20
-20
-20
=21

-21

=21

=21

=22
=23
-23
-23
-23
=24
-24
=24
=25
=25
=25
-25
=26
-26
-26
-26
=27
=27
=27
-27
-28
-28
-28
-29
=30
-30
=31

=31

=31

=32
-32
-33
-33
=33
-33

=35
=36
-36
=36

Marinchip 9900 Disc Executive User Guide

Table of contents

BASIC - BASIC interpreter
Calling BASIC
For more information
BCOPY - Binary file copy
Examples of use
Restrictions - device files and BCOPY
Messages
BRAINS - BRAINSTORM diagnostic package
Running BRAINSTORM
Memory diagnostic
Memory subtests

N —

wWwnN -

1.
1.1.
1.1.1.
1.1.1.1. 1A: Clear to zero
1.1.1.2. 1B: Set to all ones
o 1.1.1.3. 2A: §Sliding one bit
: \% .1.1.1.4. 2B: §11ding zero bit
E 2 .1.1.1.5. 3: BAddress interference test
; .1.1.1.6. 4: Addressing validation
T 1.1.1.7. 5: Byte addressing
i \ ' .1.2. Processor diagnostic
Eo . CREATE - Create a file
2 . DELETE - Delete file or group of files
. DIRECT - List file directory
. DU - Disc utility

Using the disc utility
Disc utility commands
- Dump in ASCII
- Copy disc
- Copy track
Dump in hexadecimal
- End disc utility
- Read and dump next sector
Patch buffer
- Read 1into buffer
- Read and dump in ASCII
- Read and dump in hexadecimal
Validate disc
Validate track
Write
. Write back
EDIT - Text editor

Calling the editor

Using the editor

Temporary files

For more information
FDIAG - File diagnostic

File diagnostic operation

Error messages
LINK - Linker

-—eed ek ed ed ed ed) e e e e e D b
. .

VCoOoOdoOoOdDWwN =

§:s:séig§3”§3==gtjfggaw

. « . . . « o o . .« o . . .
R S N N e e R e A)
.

—-----(ow(ocb(ocna:cooocooaoammmmmmmmmmqmmbbb-b.b.b.h.h.b.b.h.bwwfuguumy

2 OO0 ¢ o o

o DW=
|

T R T N O R N N N N O N N T N N N N N N N T N N T N Y N N N g N N N W
N-ﬂ

111~

4.1

4.11

.1
4.11.1
.1
4.11.1

4.11.1.

4.11.1.

4.11.1.

4.11.1.

4.11.1.

4.16.1.
4.16.1.
4.16.1.
4.16.1.
4.16.1.
4.16.2.
4.17.

4.18.

4.18.1.
4.18.1.
4.18.1.
4.19.

4.19.1.
4.19.2.

Marinchip 9900 Disc Exécutlve User Guide

Table of contents

Linking a program
1. Shorthand 1inking
2. Normal interactive 1linking
2.1. Defining the output file
OUT command
2.2. Speclifying the program base
BASE command
2.3. Naming the input file(s)
IN command
2.4. Table of contents files
LOC command
FETCH command
2.5. Listing the memory map
MAP command
2.6. Closing out the program
END command
Comments

3
.4. Executing the program
5

If there are undefined symbols
REF command
Sample Linker use
Linker error messages
PASCAL - Sequential Pascal compiler
Calling the compiler
Executing the program
Temporary files
For more information

PACK - Compress files on disc
Using PACK :
Error recovery in PACK
PREP - Initialise directory on unit
RENAME - Rename flle
ROMPGM - PROM programming utility

Programming PRONMs
1. Erasing the PROM
2. Verifying the PROM 1s erased
3. Programming the PROM
4. Turning off Program power
Verification of existing PROMs

SIZE - Determine space required for file
TCOPY - Text file copy utility
Using TCOPY

1. Examples of use

2. Error messages

WORD - Word processor
Using WORD
For more information

1iv

-58
-58
-59
-59
-59
=59
-59
-60
-60
-60
-61

-61

-61

-61

-62
-62
-62
-62
-63
-63
-63
-64
-67
-67

-67
T -67

-67
-68
-68
-68
-70
-72
-73
-73
-73
-73
-73
-75
-75
-76
-77
-77
=77
-78
-79
-79
-79

] ‘ ‘;‘.A

Marinchip 9900 Disc Executive User Guide

Table of contents

System library subroutines

5.1. TEXTIN.REL - Read text lnput file
5.2. TEXTOUT.REL = Write text output file
5.3. TRACE.REL = Instruction trace

TS R

-80
-81
-83

-85

7"“"""1'

Marinchip 9900 Disc Extecutive User Guide

1. Introduction

The Marinchip 9900 Disc Executive 1s an operating system for the
Marinchip 9900 computer system. It provides a comprehensive set
of user services, facllity allocation and resource management
features, and requests avallable to programs running under 1ts

control.

Key features of the operating system are:

Named files on disc. All disc I/0 1s flle relative. The
system performs all disc space allocation and detects
attempts to write or read outside file boundaries.

The system contains all I/0 drivers. all system
peripherals are handled as files within the file system.
Programs running under the system can use disc files oOr
hardware peripherals such as printers without
modification. All programs running under the system are
independent of the hardware.

The system allocates memory automatically to programs.
Programs running under the system can automatically adapt
to the amount of memory avallable without regeneration.

The system provides powerful 1local editing on the
terminal used to run the systen. Features 1include
backspace to correct errors, word delete, and a key that
retypes the current input line as edited. Programs need
not contain code for these functions. Also, the user
sees a consistent terminal interface across all programs.

The system calls are upward compatible with the Marinchip
Network Operating System. Any program that runs under
the Disc Executive will also run under the Network
Operating System. This protects the user’s programming
investment when moving to the more advanced system.

The system command set can be extended simply by writing
user programs. When the system encounters an unknown
command, it simply loads a user program with that name
(1f one exists). This allows a custom system to be built
with no modifications to the Executive itself.

2. Using the system from a terminal

This chapter describes the Executive system as seen by the user at
a terminal. This 1s a complete description of the system for all

COFREQSEIRATRSIRYA N Y L TR e e

SRS b fey SANT T L. EERAATS

B REICRAAR. i r=ya st 0 AR T AR

Marinchip 9900 Disc Executive User Guide

users except those c¢coding Assembler programs which call the
system. Assembly language interface information will be found in

the chapter "Using the system from a program” later 1in this
manuai.

2.1. Loading the system

Depending upon the system configuration, the system may be either
automatically loaded when power is applied to the machine, or may
have to be loaded from the Marinchip 9900 Debug Monitor. If the

Debug Monitor is configured, the system 1s loaded by entering the
command :

BOOT

When the system has been successfully loaded, the system sign on
message:

Marinchip Disc Executlve (Ver. x.x)

will appear, and a period will be typed on the next line. This
period 1s the "command prompt", and will be typed whenever the
Executive is ready for another command. When the period appears,
any of the system commands described below may be entered, or the
name of any executable file in the file system may be typed. If a

file name 1s ¢typed, 1t will be loaded and executed under the
control of the system.

2.2. The flle system

2.2.1. Disc files

The Marinchip Disc Executive provides named files on disc, and
files to support all hardware peripherals. File names are twelve
or fewer characters chosen from the upper case ASCII letters, the
numbers, and the special characters:

_.s.

Lower case letters, 1f used, will be treated identically to upper
case: there 1s no difference 1n the names "Fname" and "FNAME".
One disc unit 1in the system configuration 18 referred to &as the
"system disc". This unit, always called unit 1, 18 the unit from

———
—_)]

—

]

Marinchip 9900 Disc Executive User Guide

which the Executive is loaded, and i1is the default unit on all file

references. References to file names on system commands are
always of the form:

{unit)j)/<{filename>
or: ({filename)

In the first case, the file with name (filename) on disc (unit) is

selected. In the second case, the system disc unit, 1, 1s
assumed. Hence the two specifications:

GNORK and 1/GNORK
are equlivalent. Flles with the same (filename) may exXist on any

number of separate disc units simultaneously.

2.2.2. Device files

All system peripherals such as the c¢onsole and printers are
included 1n the file systen. These "Device flles" are given
speclal names within the Disc Executive. All Device Files are
assumed to exist on the system disc, 80 that no <(unit>
specification need be given. The device flles present in a system
depend upon the system configuration. Only the console device
file and the parameter string device flle are always present. The
standard names assigned to device files are as follows:

CONS.DEV Console

DISCSx.DEV Disc (unformatted access)
PARAM.DEV Program parameter string
PRINT.DEV Hard copy printer

The only restrictions 1n use of device filles stem from thelr
hardware 1limitations: it 1s meaningless to 1nput from the

printer, or to rewind the console. Attempts at such levity will
normally be ignored by the system.

2.2.3. Common file nomenclature

Since disc files and device files can be used for the most part
interchangably, throughout the rest of this manual they will be
referred to by the generic term (file). Where the manual says a
(file) should be named, either a device file or a disc flle may be

used, and either the (unit)/{filename) or (filename) form of the
name may be used.

e

LB

J

-

Marinchip 9900 Disc Executive User Guide

2.3. User console commands

The Disc Executive contains a minimum set of commands available to
the user from the console. Most Oof the "commands" typed by the
user for such functions as editing a program, etc., are actually
names of files containing programs that perform those functions.
The following commands are actually performed by the system and,
as such, may not be redefined by the user.

2.3.1. JUMP - Actlvate program in memory

JUMP (workspace),{entry)

The JUMP command will transfer control to a program in memory at
the address <(entry)>, with . 1initial register workspace at
{workspace). Both (workspace) and <(entry) are assumed to be
hexadecimal numbers; no leading 2zero 1s required before them.

This command is normally only used by machine language programmers
who are patching programs in memory.

2.4. Console support

The Executive contains an extensive handler for the c¢onsole
through which the user interacts with the system. Since the user
spends sO much time using the console, the system goes to great
pains to make the interaction as pleasant as possible.

2.4.1. Console input

The user may type input on the console whenever a prompt appears
from the system or a program has requested input. Once the first
character of 1nput 1s typed by the user, all output will be held
until the line 1s either entered by pressing the RETURN Key or

struck out. Several special functions are provided by control
keys while 1nput 1is being entered. :

2.4.1.1. Line delete

The entire line of input entered so far by the user may be deleted
by pressing the Control X kKey (ASCII code CAN). This will echo AX
on the console, throw away the line typed in so far, and retype

5 .

‘1 ‘ Marinchip 9900 Disc Executive User Guide

r the prompt for the line (if any). The user may then re-enter the
W input from the start. If the system 1s configured to use a CRT
terminal (VDU) as the system console, the input line will simply
V\ be erased when Control X-1is typed.

2.4.1.2. Character delete

The last character typed may be deleted by pressing the Backspace
(Control ‘H) Key. If the console is a CRT device, the character
1 will be rubbed out on the display and the cursor will bback up.
Any number of characters may be rubbed out by successive
: depressions of the backspace Key. If all characters on the 1line
f} have been rubbed out, the backspace will be ignored.

[} 2.4.1.3. Word delete.

The last word typed may be rubbed out by pressing the Control W
Key. This will delete characters starting from the end of the
line and working towards the start until an alphanumeric character
1s encountered. Then alphanumeric characters will be deleted
until a non-alphanumeric 1s found. This will have the result of
rubbing out the last word entered. If the console 1s a CRT

display, the word will physically disappear from the screen and
the cursor will back up over 1it.

2.4.1.4. Retype input line

All input line editing with the above special keys is very easy to
understand and use 1f the console 1s a CRT display. If the
console 1s a hard copy terminal, however, overtyping many
characters may make it very hard to ascertain just what is about
to be sent as 1nput. Pressing the Control R key will retype any
prompt for the 1line, then type the current input line as 1t
stands. The carriage will be left at the end of the input line so
that further corrections may be made, i1f required. This Key may
be used at any time when entering input.

2.4.1.5. Expansion of control characters

ASCII control characters that do not have special editing
functions documented above will be expanded when echoed to an
up-arrow (~A) followed by the letter which one presses along with

e

Marinchlip 9900 Disc Executive User Guide

the Control KXey to generate the code. This feature allows easy
editing of input containing control characters without the
confusion of trying to edit characters that aren’t visible.

2.4.1.6. Escape 1input

Any ASCII character can be entered as input by preceding it with
the Escape Key. The Escape will not be ecpoed, and the character
following 1t will be echoed directly to the terminal and placed in
the input buffer. This allows carriage return or any of the local
editing characters to be treated as normal characters and input to
a program. Note that to i1nput the Escape character 1tself two

Escapes must be typed, as the first forces the second as a normal
character.

2.4.2. Console output

Output sent to the console by programs will simply be typed as
sent, except that 1line feeds will be 1inserted automatically
following carriage return characters, and delay characters will be
automatically 1inserted to accomodate the carriage return, line
feed, and form feed delay requirements of the console device.
Note that control characters sent to the console by programs will
not be expanded into the "up-arrow" form. This allows programs to

freely -send control characters that perform special functions on
the console device.

2.4.2.1. Output pause

Pressing the Control S Key while the output 1s beling sent to the
system console will cause the system to pause at the end of the
next output line. The system will send no more output to the
console until Control S 1s typed again. Thus, Control S may be
used as a "push-push" switch to halt and resume output.

2.4.3. Console interrupt

An executing program may be interrupted by pressing the Control C
Key during console input or output. The input or output will be
aborted. If the program has requested the console 1interrupt, 1t
will be diverted to its interrupt point so that the interrupt may
be serviced. If the program does not service the c¢onsole

Marinchip 9900 Disc Etecutive User Guide

interrupt, 1t will be terminated and its workspace registers will
be dumped.

2.5. Printer support

The system contains a speclial driver to format data sent to the

device file PRINT.DEV. This driver performs page formatting and

other control functions suited to the printer connected to the
system.

2.5.1. Page formatting

When the system 1s generated, the physical properties of the
printer are selected. The system will automatically format the
page 1into a top margin, a body portion, and a bottom margin.
output sent to PRINT.DEV will appear in the body portion. The top
and bottom margins will be left blank, and prevent user data from
being printed across the page perforations.

2.5.2. Printer pause character

When the ASCII ENQ character (code 5) 1s sent to PRINT.DEV, the
printer will enter a pause state. The printer will immediately
stop, and the coconsole Wwill sound continuous bell signals.
Pressing the space bar on the console will silence the alarm.
When the RETURN Key 1s pressed on the console, the printer will
resume operation. This feature allows a program to cause the
printer to stop at points during the output, permitting the user

to change paper or print elements, or manually insert text in the
output.

2.5.3. Console output to printer

If the ENQ character (Control E) is ¢typed on the console, the
status of echolng console input and output to the printer is
reversed. 1Initially, console input and output are not sent to the
printer. Pressing Control E will cause all console input (except
direct mode input) to be echoed to the printer, and all c¢onsole
output also to be echoed. Pressing Control E again will turn this
mode back off. Control E may be used either during console 1input
or output, and has no effect other than setting the printer mode
(it will not go into the 1input buffer 1f entered as part of

Marinchip 9900 Disc Executive User Guide

console 1nput). Console data are echoed to the printer on a line
by line basis, not character by character. As a result, only
"clean" data (after all local editing, etc.) are printed, so this

mode is ideal for preparing samples to explain how to use the
systemn.

2.6. Unformatted disc support

Normally, disc storage is not explicitly dealt with by the user.
Instead, the user uses the disc through the file system, which
performs allocation and release of space, and lets the user work
with named files rather than absolute addresses. To allow
interchange of information with other systems, the Disc Executive
also allows the user unformatted access to configured disc
storage. For each disc unit in the system, a corresponding device
file exists. For unit "x", this file will be named "DISCSx.DEV™".
This file simply consists of all the storage on the disc unit,
treated as a single large file. This file may be opened 1like any
other file, and the normal I/0 calls used to access the storage on
the device. The user must be extremely careful when using this
feature, as the normal protection in the file system is bypassed,

and it 1s easy to accidentally destroy the contents of a disc
containing Disc Executive files. '

Marinchip 9900 Disc Executive User Guide
3. Using the system from a program

The Disc Executive provides three bkasic services to programs
running under 1its control: a set of system calls to perform
Services provided by the Executive, emulation of floating-point
instructions, and a 8Set of common sSubroutines used by most
software 1n the system, and provided to reduce the size of the
many programs that use them. '

3.1. System calls

All system calls are made using the extended operation facility of
the M9900 CPU. The XOP 1 1instruction 1s reserved for system
calls, and 1s referred to as JSYS (Jump to SYStem) throughout this
manual. The Marinchip 9900 Assembler recognises the mnemonic JSYS
for XOP 1. The operand of the JSYS instruction 1s a packet that
contains the code for the request being made and storage for
passing of parameters between the calling program and the
Executive. The format of the packet depends upon the request
being made, but the first byte 1s always the request index and the
second byte 1s always a status returned by the Executive. A zero
status always indicates normal completion of the request.

The following paragraphs will describe the system calls. In the
paragraph heading, the mnemonic for the system call will be given,
followed by the hexadecimal code for the request. Parameters
passed to the system will appear as simple hnhames. Parameters
returned will be enclosed in parentheses.

A file which defines the mnemonics for the system calls 1s
provided by Marinchip Systems on the standard system disc. It may
be included in an assembly language program by the statement:

COoPY "JSYSS"
3.1.1. Process control

The following requests control the active program. They are a
subset of the requests in the Network Operating System, which
permits multiple processes in one program.

10

Marinchip 9900 Disc Executive User Guide

3.1.1.1. EXITS (02) Terminate process

The executing program 1is terminated and the operating system
prompts the user for the next command or program. If the
{termination status) 1s nonzero, a message will be printed with
the termination status and the address at which the program
terminated. The program’‘’s workspace registers will be dumped.
Setting the (termination status) to a unique code and performing
an EXOITS i1s an easy way of indicating an error condition within a
program.

3.1.1.2. TRAPS (0E) Reset interrupt action

The TRAPS request allows a program to catch being interrupted bLY
the Control C key during execution. If the TRAPS call has not
been made and Control C 1s pressed, the program will be terminated
and 1ts workspace registers will be dumped. If the (selection
mask bits) are 1, the console trap will be set. Otherwise, 1t
will be cleared. The (trap routine address) is where control will
pass on an 1interrupt. When an interrupt occurs, <((reent addr)>
will be set to the address at which the program was interrupted,
and ((error type, code)) will be set to zero for the console trap.
The first ¢ (additional status)) word will be set to the address of

11

(S

Marinchip 9900 Disc Executive User Guide

the JSYS packet 1in progress. if the program was interrupted while a
system call was 1n progress. The second ¢ (additional status))
word 1s reserved for future extensions to the TRAPS request.

3.1.1.3. MENMS (OF) Determine memory limits

The MEMS request may be used by a program to determine the start
address and - length of unallocated memory following the program
itself. The (subfunction) must be 1 and 1indicates that the
request - 18 for the unallocated memory bounds. (The Network
Operating System uses other subfunctions of the MEMS request.)
The first address following the program will be stored 1in ((first
free address)), and the length of the free area in bytes will be
stored 1in the ((free area length)) field. The ((status)) will be
set to zero, indicating normal completion. If the <(subfunction>
1s not 1, the request will be rejected and the ¢ (status)) will be
set to 6. This request 1s particularly useful in connection with
the dynamic memory allocation routines described later in this
manual under "System subroutines™. A program can determine the
si1ze of the unused area following it in memory, establish a buffer
pool 1in this area using the BEXPS subroutine, and then allocate
space from the pool. Such a program will automatically use all
the free memory avallable 1n a system without having to be
reconfigured as memory 1s added or removed.

3.1.1.4. EXECS (11) Execute a program

12

)

Marinchip 9900 Disc Executive User Guide

aa

The EXECS request allows a program to call another program. The
program called overlays the calling program, S0 there 18 no
return. (command address? 18 the address of an ASCII string
containing the command to call the program to be executed. The
format of the command 1i1s identical to what would be typed on the
system console to execute the program, and may include parameters
following the file name of the program to be executed. <(command
length) is the length of the command 1in bytes. If the EXECS
request completes normally, the calling program will be terminated
and the requested program will be loaded and executed. If an
error occurs, a code indicating the nature of the error will be
returned to the calling program in the ((status)) field, and the
request will return to the calling program. A status of 3
indicates the file to be executed could not be found 1in the
directory. A status of S5 indicates the file name specification
was badly formed, and a status of 7 indicates the file named was
not an executable file. Errors detected while 1loading the
requested program will cause an error message to be printed on the
system console and return to operating system command mode.

3.1.2. File control

3.1.2.1. OPENS (05) Open a file
........... 6§ﬁﬁé.......".""."..'.Eéfééﬁés".".....
....... &..........................ifiié.iﬁbé*;........

The address of the ASCII string containing the name of the file to

13

Marinchip 9900 Disc Executive User Guide

be opened is placed 1n <(name address), and the length of the
string 18 placed in (name length). If the flle 1is found and
opened normally, <((status)) will be set to zero, and ((file
index)) will be set to the index used 1n all subsequent references
to the file. The (access mode) field determines how the file may
be subsequently accessed. If Zzero, both reading and writing will
be permitted. If 1, only writing will be permitted, and 1if 2,
only reading will be permitted. If the named file cannot be found
in the directory, ((status)) will be set to 3. If the file name
1s badly formatted, ((status)) will be set to 5. There 18 a limit
on the maximum number of concurrently open files. This limit 1s
specified when the Disc Executive 1s generated and 1s normally set
to 10 files. If this limit 1s exceeded, the OPENS request will be
rejected with a ((status)) of 8. Both disc and device filles may
be opened by this request. All files must be opened before use.
A given file may be open more than once: a separate address
pointer 1s maintained for each open instance of a file.

3.1.2.2. CLOSES (06) Close a f1le
.............. éﬁé.'..'...’....’.'....iééiiﬁéi...'.'....
R R R R R R fiié.iﬁbéi

The file with (file index) (the number returned when the file was
opened) will be closed. If no file with (file 1index) was open,
{(status)) will be set to 4.

3.1.2.3. DELETES (09) Delete a file
.......... 6.'...&...'....".."..'ll.(‘lm.:i‘}é;.l.lblll..
: & ..

The address of the name of the file to be deleted is placed in
(name address), and the length of the name string 1is placed 1in
{(name 1length). If the file was deleted properly, ((status))> will
be set to 2ero. If no file of the specified name was found,

14

“,A.@%p -

—

Marinchip 9900 Disc Executive User Guide

((status)?> will be 8et to 3. If the syntax of the flle name 1is
bad, ((status)) will be set to 5. Note that a file need not be

open in order to be deleted. If the file 18 open, it will be
automatically closed. v

3.1.3. Input/Output

3.1.3.1. READS (0B) Read from a file
teeseccnaaas é Eéfiiﬁéi
.................................... ?iié.iﬁﬁéi.".".'.

.
ooo
°
--
.

.

The next block of information from the file specified by (file
index? 18 read into the buffer starting at (buffer address). The
length of the block read 1is given by (buffer length in bytes).
The actual length transferred is stored in ((bytes transferred)>.
The Disc Executive imposes the restriction that the (buffer length
in bytes) must always be a multiple of 128 bytes. When reading
from a device file such as the console, the actual length
transferred will be the length of the logical unit of 1information
on the device, such as a line on the console. Input from the
console will end with the carriage return typed at the end of the
line. The <((status))> will be zero for normal completion, 1 for
end of flle, and 2 if an unrecoverable I/0 error occurred. If the
(file 1index)> 1n the packet 1s incorrect, the ((status)’> will be
set to 4. The end of flle status will be given only when no
information 1s transferred by the request. A read that starts
within the flle and extends past the end of the flle will be
truncated to the length of the information remaining in the file,
and a normal status.will be given. The <((bytes transferred)?’
field will contain the length actually delivered to the buffer.

15

Marinchip 9900 Disc Executive User Guide
3.1.3.2. WRITES (0C) ~ Write to a file
;. ﬁﬁiiﬁé féﬁiﬁﬁés
; fiiﬁ'iﬁbéﬁ
; e e e e e e é Abﬁﬁﬁéé :
; llll ® @& 8 o 0 0 0 0 0 o0 éll- """"'iﬁ'é""s. lllllll .ll.llll:
:l L] e @ 0 0 0 0 o 0 0 o Eé...'.ﬁﬁé llllll ;lll..lll..lllll..l

The 1information starting at (buffer address), with length (buffer
length 1n bytes), 1s written to the file specified by <(flile
index>. The number of bytes actually transferred (normally the
same except 1n the case of error) 1s stored in { (bytes
transferred)). When writing to a disc file, the Disc ExXecutive
requires that the buffer length be a multiple of 128 bytes. The
values returned in the ((status))> field for the WRITES request are
identical to those returned for the READS request (see above).
Note 1n particular that an attempt to write with a buffer length
that would extend past the end of a file will cause the length ¢to
be truncated to the length left in the file, but will still return
a zero status 1n the packet. As a result, programs should test
that the ((bytes transferred)) field 1s equal to the (buffer
length in bytes) field after a WRITES request and report an error
1f the fields differ.

3.1.3.3. SEEKS (0D) Set flle address pointer

16

r,;;

Marinchip 9900 Disc Executive User Guide

...

: SEEKS (STATUS) :
; éﬂéﬁ SEEEEE ..éiié.iﬁbﬁ* ;
; cecsescevonns 6f§éé§.Z6§§ﬁﬁ.is BIféi...

Files are normally processed sequentially. As each READS or
WRITES request 1s processed, the flle address pointer is
incremented by the number of bytes read or written to the file.
To process a file randomly, the SEEKS request may be used to set
the address pointer to any desired value. The field (seek base)
selects to what the seek 18 relative. If 2zero, the 32 bit
(offset) field 1is the absolute byte number in the file. If one,
the (offset) 18 added to the current position 1in the file ¢to
compute the new address pointer. If two, (offset) 1s relative to
the end of the file. Note that (offset) may be positive or (two’s
complement) negative. At the completion of the command, the new
address pointer will be stored in the ((new pointer)) field. The
pointer may be read by doing a seek relative to the current
position with an offset of zero. The Disc Executive enforces the

restriction that the address pointer always be a multiple of 128
bytes.

3.1.3.4. IOCTLS (10) Set file modes
............ i....é.......,............éé&a&ﬁéi..........
........... ﬁé....é+ﬁ.......:........éiié.iﬁbék.........

The IOCTLS request 1s used to 8et flle modes. The request
operates on the currently open file identified by (file 1ndex).
The operations to be performed on the fille are specified by a
"function string” whose 1length 1n bytes 1s specified by (string
length) and whose starting address 1s specified by (string

17

—

Marinchip 9900 Disc Executive User Guide

address). The function string consists of one or more type bytes,
followed by data bytes 1n a format depending upon the type byte.
The Disc Executive supports only one type byte for the IOCTLS
request, a function which sets the system console 1into direct
(character by character) 1nput, or returns it to normal (line
buffered) mode. This operation byte has a code of 1, and 1s
followed by one data byte. If the data byte is 1, the echoing of
characters to the system console will be suppressed, and each
character typed will be passed immediately to a program with a
pending READS request from the console. If the data byte 1s zero,
the Executive will buffer a line of 1nput, echolng input to the
terminal and providing its normal local editing facilitiles, then
pass the entire line to the walting program when the RETURN Key 1s
pressed. Regardless of mode, the Control C key will interrupt the
executing program. The system console will be automatically reset
to normal (echo) mode when a program terminates and the system
command prompt appears. If the IOCTLS operation completes
normally, the ((status)) field in the packet will be set to 2zero.
If the <(flle 1index)> 1s for a file other than the console, the
((status))> fileld will be set to 4, and 1f the type byte 18 other
than 1, the ((status)) will be set to 6.

3.1.4. System call error codes

When a system call (JSYS) completes normally, the ¢ (status)>) field
in the request packet will be set to zero. When an error occurs,
the ((status)) field 1s set to a numeric code indicating the
error. The error numbers are common to all requests 1in that a
given code has only one meaning regardless of which request
returned it. The error codes dgenerated by each request are

discussed 1n the description of the request, and are summarised
below.

Code . \ Meaning

Request completed normally

End of file on I/0 request
Unrecoverable I/0 error during request
File not found 1in directory

Bad file index

Bad file name syntax

Bad subfunction on request

Flle not executable

Too many concurrently open files

oOJdoOODdDWNN=0

18

Marinchip 9900 Disc Executive User Guide
3.2. Program execution environment

‘When a program is given control by the Disc Executive, certain
information 18 set up which 1t may retrieve by making various
system calls. This section describes the execution environment of

a program. and how a program may determine this information at
eXecution time.

3.2.1. Memory allocation

The standard starting address of programs run under the Disc
Executive 1s 100 hexadecimal. Programs generated by the Linker
will normally be started at this address. The area below 100
hexadecimal 1s reserved for the exclusive use of the Disc
Executive and must not be modified by programs. The area of
memory from the end of the user program to the start of the Disc
Executive in high memory 1s avallable for use by the program (for
example, for a buffer pool). The starting address and length of
this area can be determined by use of the MEMS system call.

3.2.2. 1Initial workspace

When a program 18 given control after being 1loaded by the Disc
Executive, 1t will be given an initial set of workspace registers.
This set of registers 1s located in an area of memory configured
when the system 1s generated, and should be used by the user
program. The user program 1s free to switch to other register
workspaces at will with the LWPI and BLWP instructions, but use of
the initial workspace allows the program to automatically adapt to
the presence of a fast workspace memory area 1f one is available
on the machine on which the program 1s executed.

3.2.3. Program parameter string

When a program 1s called from the system console, parameters may
follow the file name. This parameter string may be used to pass
information to the program being called without having to prompt
the user for the 1information. The system saves the parameter
string (all characters following the file name) 1n an 1internal
buffer, and allows the program to read it via the pseudo device
file "PARAM.DEV". The file PARAM.DEV may be opened like any other
file. When the READS request 1s 1ssued on the file index returned
from the OPENS request for PARAM.DEV, the parameter string will be

19

et R AU S

Marinchip 9900 Disc Executive User Guide

returned to the buffer address specified in the READS request
packet. The parameter string will be terminated by a carriage
return character, which Wwill be 1ncluded 1n the count of
characters returned.

3.3. Floating poilnt emulation

The Disc Executive provides emulation of IBM System/370 single
precision floating point instructions. Emulation of instructions
18 requested by the XOP 2 1instruction, which 1s defined 1n the
Marinchlip Assembler as FLOP (Floating OPeration). The effective
address of the FLOP 1nstruction 1s a packet structured as follows:

The <(opcode) field selects the function to be performed by the
instruction. The action taken by different (opcode)s 1s described
below. The Network Operating System does not include the floating
point emulation package, so programs developed for use under both
the Disc Executive and the Network Operating System should use an
alternate subroutine version of the floating point package,

supplied by Marinchip Systems with the Network Operating System
and described 1n its User Guide.

3.3.1.1. AES (01) Floating add

The floating point number at the address given by (source address)
1s added ¢to the floating point number at (destination address).
The result 1s stored at (destination address).

3.3.1.2. SES§ (02) Floating subtract

The floating point number at the address given by (source address)
1s subtracted from the floating point number at (destination
address). The result 1s stored at {(destination address).

20

]

—R

|
{

”

Marinchip 9900 Disc Executive User Guide
3.3.1.3. MES (03) Floating multiply

The floating point number at (source address) 1i1s multiplied by the
floating point number at (destination address). The product 1s
stored at (destination address).

3.3.1.4. DES (04) . Floating divide

The floating point number at (source address) 1s divided into the
floating point number at (destination address). The quotient is
stored at {(destination address).

3.3.1.5. CES (0S) Floating compare

The numbers at (source address) and <(destination address)> are
compared, and the status bits are set depending upon their
relative values. The arithmetic and logical status bits are set

the same, so0 that either set of instructions may be used to test
the result of the comparison.

3.4. System subroutines

The Disc Executive makes a set of dgenerally useful subroutines
avalilable to programs running under 1its control. These
subroutines are used within the Executive itself, and are provided
to encourage programs to use a common sSet of functions for the
services they provide. The subroutines are called via a system
subroutine entry vector in 1low memory. Each location 1in the
vector contains a jump to the actual subroutine entry point. The

subroutines should always be called through the entry vector to '

allow them to be moved within the system from‘release to release.

The following table 1lists the entry addresses of the system

subroutines. Each entry gives the entry address in hexadecimal,
the mnemonic for the entry name, and a brief description of the
function provided. Refer to the descriptions of the actual

subroutines below for full 1information on how each should be
called.

The mnemonics for the system subroutine entries are defined 1in a
file provided by Marinchip Systems on the standard system disc.
This file may be 1ncluded 1in an assembly with the statement:

21

L

.

L

L

—

Marinchip 9900 Disc Executive User Guide

COPY "SYSUBS"™

Entry Mnemonic Description

080 BGET " Allocate buffer

084 BGETA Allocate buffer with error return
088 BREL Release buffer

OES8 BEXP Expand buffer pool

oDs8s INSERT Place buffer at end of queue

0oDC PUSH Place buffer at head of queue
OEO REMOVE Remove buffer from head of queue
0E4 INITQ Initialise queue links

08C EDITS Initialise output editor

030 EDITXS Terminate output editor

094 EDITRS Re-enter output editor

098 ' ECHARS Edit a character

09C ESKIPS SKip columns

OAQ ECOLS Tab to specific column

0A4 ECOLNS Retrieve current column

OA8 ECOPYS Copy text

OAC EMSGS Copy until stop character

0COo EMSGRS Continue copying after stop char
0C4 EMSG1S Copy till stop, don’t save location
ocs EHEXFS Edit fixed length hexadecimal
occC EHEXVS 'Edit variable length hexadecimal
0oDO0 EDECFS Edit fixed length decimal

0D4 EDECVS Edit variable length decimal

The subroutines provided by the system are 1in three major
categories as listed above: dynamic memory allocation, linked
1ist maintenance, and output editing. Each package will be
described below.

3.4.1. Calling sequence conventions

All system subroutines destroy only the registers in which results

are returned, and register R11 1f they are called with a BL
instruction. All registers in which parameters are passed, and
all registers not mentioned in the description of the subroutine
may be assumed to be preserved across a call on that subroutine.

22

e
i PR

S

F T T }

|

Marinchip 9900 Disc Executive User Guide

.3.4.2. Output editing package

The system provides a comprehensive set of subroutines that may be
used to construct messages to be read by users or placed in files.
The package provides most commonly used editing functions and
eliminates the duplication of effort in recoding such routines 1in
every program written. The package 1s completely table-driven,

and may be used to compose multiple 1ndependent messages
concurrently.

3.4.2.1. Edit mode

A program wishing to use the output editing package must supply a
packet containing information about the area to be edited into.
The packet 1= 32 bytes 1n length. The single byte at offset 14 in
the packet 1s the message delimiter character to be used by EMSGS,
EMSGRS, and EMSG1S (see below). The word at offset 18 1in the
packet 18 the address of the buffer where the edited output is to
be placed. The length of the output buffer is placed in the word
at offset 20. The rest of the packet 1s used by the editing
routines for temporary storage, and 1s all the storage used by the
editor: the editing package 1s totally reentrant. Once the
packet has been defined, the program must enter edit mode.

3.4.2.1.1. EDITS - Enter edit mode

LI RO ,{ packet)
BL EDITS

{return) R12 set to packet

When called, EDITS initialises the packet from the information
supplied by the user, blank fills the output buffer, and sets the
column pointer to the first character in the output buffer. The
original contents of R12 1is saved in the packet, and R12 1s set to
point to the packet. As 1long as the program 1s calling the
editing routines, R12 must be left pointing to the packet.

3.4.2.1.2. EDITXS - Terminate edit mode
BL EDITXS
{return) RO = packet, R12 restored

The EDITXS call terminates edit mode. Upon return, R12 will be

23

| —

Marinchip 9900 Disc Executive User ‘Guide

restored to its contents at the time EDITS was originally called.
The address of the packet will be returned 1in RO. After
terminating edit mode with EDITXS, the output buffer may be used
in any manner desired. A subsequent call to EDITS will
reinitialise the buffer. If desired, the user may terminate edit
mode with EDITXS, do some other processing, then re-enter edit
mode with EDITRS (see below) and pick up right where he left off.

Syt

3.4.2.1.3. EDITRS - Re-enter edit mode

LI RO,(packet)
BL EDITRS
{return> = R12 = packet

2

The EDITRS request re-enters edtt‘”mode with a packet that has
previously been left with _EDITXS: ‘The output buffer 1is not
blanked, and the& column pointer is léft wherever it ‘was at the
time EDITXS was. called. note that ‘&’ packét ‘used ‘with ‘EDITRS must,
at some time, ‘haVe 'Héen inittally get dp BY*EDITS: 1t 1s not

possible to use EDITRS“foran“initidl entry tg-edft mode .

N

3.4.2.2. The column bpipter

All editing done by the editing package is performed at a location
defined by the "column pointér"™. - Characters in the output buffer
are numbered from zero to the number of characters in the buffer
minus 1. When the package 1is initialised, the column pointer 1s
set to zero, and hence points to -the 'first character 1in the
buffer. All of the editing subroutines ‘Store charactéers into the
output buffer starting at the currént column pointer, and advance
the column pointer as they store. 1In addition, several routines

manipulate the c¢column pointer alone without " modifying the
information in the output buffer. ¥

3.4.2.2.1. ESKIPS~' - Position column pointer relative
LI RO,(count)
BL ESKIPS
{return)

The <(count> 1n RO 1s, added to the current column position.
(count) can be either positive or negative, so the pointer can be
elther advanced or backed up over information previously stored.
Note that ESKIPS does not blank f£f111 the columns skipped: if

24

, 4.
{
| B

.

Marinchip 9900 Disc Executive User Guide

information has previously been edited 1nto them, 1t will be
preserved.

3.4.2.2.2. ECOLS - Position column pointer absolute
LI RO,{column’
BL ECOLS
(return)

The column pointer will be set so that (column) will be the next
character 1nto which information 1s stored. Setting (column) to
zero will return to the start of the output buffer.

3.4.2.2.3. ECOLNS - Retrieve current column number

BL ECOLNS
{return) RO = column

Upon return from ECOLNS, user register RO will contain the column
number of the column pointer. This call 1s commonly used to

determine the 1length of a 1line just composed with the editing
routines.

3.4.2.3. Character editing

The character editing entries allow either single ASCII characters
or strings of characters to be placed 1in the output buffer. These
routines advance the column pointer as characters are stored.

3.4.2.3.1. ECHARS - Store single character
LI RO,{character)
BL ECHARS
{return)

The single ASCII character right-justified in RO 1s stored in the

output buffer at the current column position. The column pointer
1s advanced one character.

25

|

Marinchip 9900 Disc Executive User Guide

3.4.2.3.2. ECOPYS - Copy character string
LI RO,(strihg start)
LI R1,{(length)
BL ECOPYS
{return)

The string of characters starting at the address (string start)
with length (length) 1s copied to the output buffer. The column

polinter 1s advanced by the number of characters stored. The
(string start) address need not be aligned on a word boundary.
3.4.2.3.3. EMSG1S - Copy string to stop character
LI RO,{string start) -
BL “ EMSG1S$ é}
{return)

The string starting at (string start) 1s coplied to the output
buffer character by character until the character supplied in byte
14 of the packet passed to EDITS i1s found. This request allows a
string to be specified 1n a manner more convenient and compact
than by counting the characters in the string and using ECOPYS.

3.4.2.4. Message editing

Most messages generated by proérams consist of fixed 1information
with variable information inserted by the program. The message
editing entries allow easy composition of such messages.

3.4.2.4.1. EMSGS - Start message editing ;)
LI RO ;(message address)>
BL EMSGS
{(return»

The message starting at (message address) will be copied into the
output buffer character by character until a stop character equal
to the character in byte 14 of the packet passed to EDITS 1s
found. The address of the character following the stop character

will be saved in the packet. The column pointer 1is advanced once
for each character stored 1n the buffer.

26

Marinchip 9900 Disc Executive User Guide

3.4.2.4.2. EMSGRS - Continue message editing

BL EMSGRS
[w (return)

EMSGRS works exactly like EMSGS, except the image copied starts at
= the address saved by the last EMSGS call. EMSGRS copies to the
{ next stop character, then saves the address of the character
following the stop character. EMSGS and EMSGRS allow portions of
a message to be copied, pausing periodically to insert information

1 in the message using the other editing routines.

—

v} 3.4.2.5. Numeric editing

The editing package 1ncludes entries to edit 16 bit numbers to
either hexadecimal or decimal. Both variable length and fixed
length editing is provided.

%;jj:

?K 3.4.2.5.1. EDECVS - Variable length decimal edit
{] | LI RO,(value)
L BL EDECVS
(return)
(‘ .
3 The value in RO will be edited as a decimal integer. 1If the sign

. bit 18 set, a minus sign will be edited before the number. EDECVS
r edits only the number of characters required to hold the number
«} edited to decimal: for example, the number 1 would occupy one
character, 234 would require three, and -16255 would require six.

The column pointer will be left set after the last digit edited.

P 3.4.2.5.2. EDECFS - Fixed length decimal edit

LI RO,{value)
X LI R1,(1length)
\J BL EDECFS
- (return) .
\ The value 1in RO is edited right-justified in a field whose width
| & 1s specified by R1. The column pointer i1s left after the last

digit edited. If the number supplied 1in RO requires more
, characters to edit than the field size contains, it will overflow
? \ the field to phe right. Characters in the field into which digilts

27

-

¢ | 3

!]

Sl

ST
P

Marinchip 9900 Disc Executive User Guide

are not edited will be unchanged: hence it 1s possible to edit
with leading zeroes or check protection by pre-editing the desired

£ill into the fleld, backing up ‘with ESKIP$S or ECOLS, then
overlaying the number 1in the field with EDECFS.

3.4.2.5.3. EHEXVS - Variable length hexadecimal edit
LI RO,(value)
BL EHEXVS
{return)

The value passed 1n RO 1s edited to hexadecimal as an unsigned 16
bit integer. If the value in RO 1is larger than 9, a leading zero
will be edited, following the system convention that a leading

zero signifies hexadecimal. The column pointer will be left after
the last digit ed;ted.

3.4.2.5.4. EHEXFS - Fixed length hexadecimal edit
LI RO,(value)
LI R1,<length)
BL EHEXF'S
{return)

The value passed in RO 1s edited right-justified in a field with
length passed in R1. All characters in the field before the first
nonzero digit of the edited number will be filled by 2zeroes. The
column pointer will be left immediately following the last digit
edited. If the value is too 1large to fit 1in the field size
supplied, the high-order digits will be truncated. This means,

for example, that the low byte of RO may be edited simply by
supplying a count of 2 in R1.

3.4.2.6. Sample use of the editing package

The following program fragment uses the editing routines to build
an error message as might be generated by a compiler. Note how

the various routines are used to insert specific information into
the "canned" message text.

LI RO, EPKT Load editor packet address
"BL EDITS Start up the editor
LI RO ,ERRMSG Load error message address
BL EMSGS Copy message

28

Marinchip 9900 Disc Executive User Guide

MOV LINENO,RO Load line number of error
BL EDECVS Edit it to decimal
BL EMSGRS Copy to value
MOV BADVAL,RO Load the bad value
LI R1 ,4 Load length to edit
BL EHEXF'S Edit value to hexadecimal
BL EMSGRS Copy rest of message
BL ECOLNS Get number stored
MOV RO ,OUTLEN Save output message length
BL EDITXS Terminate the editor

EPKT BSS 14 Editor packet

_ BYTE ‘&’ ,0 Stop character and fill

BSS 2
DATA OUTBUF, 80 output buffer and length
BSS 10

OUTBUF BSS 80 Output buffer

ERRMSG TEXT “Error on line &. Bad value &.&’

3.5. Storage and linked list subroutines

The dynamic memory allocation and linked list subroutines share a
common workspace area and calling sequence conventions. As a
result, they will be discussed together here. In order to use
these routines, the user must provide a workspace area and buffer

pool control storage. This area is formatted as follows in an
assembly program:

BHEAD DATA BHEAD,-1 ,BHEAD ,BHEAD Buffer pool head

éws EQU $-16 Primitive work space tag
BSS 4 Space for R8, RS
DATA BHEAD Storage -head pointer
BSS 10 ' Space for R11 - R1S

The various routines are entered via the BLWP instruction through
a set of context switch vectors supplied by the user. These
vectors reference the workspace defined above, and the entry point
to the proper subroutine name. The entry vectors are commonly
given the same name as the subroutine name, but followed by a
dollar sign. A definition for an entry vector for all the buffer
allocation and linked list routines 1is as follows:

INSERTS DATA PWS , INSERT

29

neither need be even.

Marinchip 9900 Disc Executive User Guide

PUSHS DATA PWS ,PUSH
REMOVES DATA PWS,REMOVE
INITQS DATA PWS,INITQ
BGETS DATA PWS,BGET
BGETAS DATA PWS,BGETA
BRELS DATA PWS , BREL
BEXPS DATA PWS ,BEXP

A workspace area and entry vector, formatted as given above, 1s
supplied by Marinchip Systems in the file "PRIMWS" on the standard

system disc, and may be 1ncluded 1n an assembly Wwlth the
statement:

COoPY "PRIMWS"
3.5.1. Dynamic memory allocation routines

The dynamic memory allocation routines maintain a pool of free
space, allocating buffers from it, releasing them back to it, and
allowing space to be added to the pool at any time. The allocator
uses a free 1list chain technique which allows buffers to be
allocated with the size the user requested, and does not limit the
user to a potentially wasteful power of two size as 4o many "buddy
system" schemes. The overhead storage used to control the buffers
allocated amounts to only eight bytes per buffer. When space 1is
released and the adjacent space 1s an available buffer, it is

combined into one large area, so that fragmentation problems are
minimised.

3.5.1.1. BEXPS - Add space to buffer pool
LI R0O,¢(length of area to add»
LI R1 ,(address of area to add»
BLWP BEXPS
<{return»>

The buffer pool defined 1in the 1nitial workspace for the
allocation routines 1s void: no free space 1s provided. Before
allocation may begin, the user must supply the raw pool of storage
from which buffers are to be allocated. This 1s done with the
BEXPS call. The area passed 1s typically the area from the end of
the code portion of the program to the end of system memory, hence
all free memory is automatically available for buffers. RO should
contailn the 1length of the area in bytes, and R1 should point to
the first byte 1n the area to be added to the buffer pool:

BEXPS can be called at any time to add

30

Marinchip 9300 Disc Executive User Guide

additional storage to the buffer pool. For example, some programs
initially define thelr buffer pool with BEXPS, then after all
their initialisation is complete, release the area occupied by the
initialisation code itself into the buffer pool.

3.5.1.2. BGETS - Allocate a buffer: error 1if none

LI R1,{(si1ze in bytes>

BLWP BGETS

{return»> R1 = buffer allocated
The BGETS entry will allocate a buffer of the requested size and
return its address in R1. If there 1s 1insufficlient space ¢to
allocate a buffer of the requested size, the program will be
terminated with an error code of 010. Programs which wish to

handle the out of buffers situation themselves should use the
BGETAS request, described below. Note that buffers allocated by
BGETS will always start on a word boundary.

3.5.1.3. BGETAS - Allocate a buffer: return if none
LI R1,{(si1ze in bytes) .
BLWP BGETAS
DATA {insufficient space)
(return) R1 = buffer allocated

A buffer will be allocated with the .size requested in R1 and its
address Ww1ll be returned in R1. If insufficient storage remains
to allocate a buffer of the requested size, the routine will
return at the address specified for {(insufficient space). Buffers

-allocated by BGETAS will always start on a word boundary.

3.5.1.4. BRELS - Release buffer
LI R1,(buffer address)
BLWP BRELS
(return)

The BRELS entry returns a buffer allocated by BGETS or BGETAS to
the avallable space pool. The address passed in R1 on the call to
BRELS must be an address previously returned by BGETS or BGETAS.
To add storage outside the buffer pool to 1t, use the BEXPS
request, documented above.

3

Marinchip 9900 Disc Executive User Guide

3.5.1.5. Buffer allocation errors

The buffer allocation routines will terminate the requesting
program 1f certain errors are detected. The error code used to
terminate the program indicates which error was detected. The
following are the error codes generated by the buffer allocation
routines:

010 No space for buffer on BGETS. This error
causes an abnormal return to the program 1f
BGETAS 1s used instead of BGETS.

011 Attempt to release unallocated buffer via
BRELS. Check address passed to BRELS.
012 Backpointer in next buffer was bad. This will

result 1i1f the program using the buffer stored
off the end of the buffer, and may also result
1f a bad address i1f passed to BRELS.

3.5.2. Linked 11ist routines

The following subroutines manipulate doubly 1linked 1lists of
buffers. Each list 1s defined by its "list head", which 1s a two
word (four byte) block of storage arranged as follows:

® 2 © © ® 6 ® 0 o © ® 0 o 0 0 P 2 o © 0 0 00 0 o 0 0 0 o ® o 0 o 0 0 0 0 e e 0 v .
.
..

.
--

The back 1link polints to the last buffer on the queue, and the
forward 1ink points to the first buffer on the queue. If there 1is
only one buffer on the queue, the forward and back links will both
point to that buffer. If the queue 1s empty, both 1links will
point to the address of the queue head itself. Buffers to be
placed on the queue must have a two word area at the start

reserved for queue 1links. The 1link area at the start of the
buffer will be used for back and forward links exactly like those
in the dgqueue head. Storage after the 1link area may contain

anything the user desires, and 1is 1n no way examined or
manipulated by the queue routines.

32

Marinchip 9900 Disc Executive User Guide

3.5.2.1. INITQS - Initialise queue links
LI - R9,{queue)
BLWP INITQS
{return)

The 1inks in the two word area whose address is passed 1n RO will
both be set to point to the address 1in R9. This 1initialises an
area of storage as an empty queue. This can also be easily done
by user code, and 1is provided only as a convenience and to
encourage dynamic creation of queue heads.

3.5.2.2. INSERTS - Insert buffer at queue end

LI R8,(buffer)
LI R9,{(queue)
BLWP INSERTS
{return)

The buffer whose address 18 passed in R8 1s chained at the end of
the queue whose head address 1s passed in R9. Only the links in

the first two words of the buffer pointed to by R8 will be
changed.

3.5.2.3. PUSHS - Insert buffer at queue start
LI R8,(buffer)
LI R9,{(queue)
BLWP PUSHS
{return)

This entry 1s identical to the INSERTS entry described above, but’
the buffer 1s placed at the start of the queue instead of the end.

A buffer placed on a queue with PUSHS will always be the first to

be removed by a subsequent call on REMOVES.

3.5.2.4. REMOVES - Remove next buffer from gqueue

LI R9,(queue)
BLWP REMOVES
({return» R8 = buffer

The first buffer on the queue will be removed from the queue and

33

Marinchip 9900 Disc Executive User Guide

1ts address will be returned to the user in RS8. The address
returned will be the address of the first link word in the buffer,

which 1s the same address passed to INSERTS or PUSHS when the-

buffer was placed on the queue. If the queue was empty, R8 will
contaln the address of the queue head itself upon return. This
allows the empty condition to be tested simply by comparing the
address returned in R8 with the queue address still 1n RS. Hence,
a remove with empty test would be coded as follows:

LI R9, MYQUEUE Load queue address

BLWP REMOVES Remove next buffer

C R8,R9 . Was queue empty ?

JEQ EMPTY Yes. Don‘’t do anything
34

By

)

Marinchip 9900 Disc Executive User Guide
4. System utility programs

The Disc Executive supports a wide variety of software packages,
including compilers, assemblers, debug packages, and utilities.
This section of the manual will describe all of the standard
programs which are called by commands from the system console.
For many commands, this documentation is complete. For complex
software packages such as the assembler or Pascal compiler, a
brief command description 1s included and the user 1s referred to
the appropriate manual for further information.

Several of the utlility programs described 1in the following
sections are actually different names for a common program called,
for historical reasons, "the shell". This program, which is
stored 1in the file SHELLS.OBJ, is automatically called by the Disc
Executive when any of the commands it implements are entered. The
fact that all of the vital file-oriented commands are performped by
a 8ingle program makes the task of setting up new system discs
much more simple, as only that program need be copied onto a new
disc. The commands currently implemented in SHELLS.OBJ are BCOPY,
CREATE, DELETE, DIRECT, PREP, and RENAME.

35

Marinchip 9900 Disc Executive User Guide
4.1. ASM - Assembler

The Marinchip Assembler 18 an expression-oriented relocatable
assembler for the Marinchip 9900 computer. It accepts a source
syntax largely compatible with the Texas Instruments 9900
assembler, and produces relocatable code completely compatible
with that used by Texas Instruments.

4.1.1. Calling the assembler

The assembler 1S called with a command of the form:
ASM (reloc)=(source’[,{1listing))

where <(source)> 1s the name of the file containing the source
program to be assembled, (reloc) 1s the name of the file in which
the relocatable output of the assembler 1s to be stored, and
{listing) 1s the optional file where the assembly listing 1s to be
written. If no <(listing) file 1s specified, no listing will be
generated, but lines with assembly errors will still be listed on
the system console. If the assembly listing is sent to a disc or
device file other than the console, lines with errors will still
be logged to the console.

4.1.2. For more information

Refer to the manual "Marinchip 9900 Assembler User Guide" for
complete information on writing assembly language programs and
using the assembler.

36

|

Marinchip 9900 Disc Executive User Guide

4.2. BASIC - BASIC interpreter

Marinchip BASIC is a comprehensive implementation of the BASIC
language, Wwith extensions for string processing, file access, and
interface to hardware devices. BASIC precompiles the program to
speed execution speed, and automatically operates in integer or
floating point mode as required by the program. Marinchip BASIC
provides immediate execution of statements, a symbolic statement
trace, and the ablility to pause execution, modify a program, and

resume 1it. These features greatly ease the debugging of complex
programs.

The BASIC present in a given system may be either the standard
Marinchip BASIC, or Extended Commercial BASIC, an optional
software package which also provides 16 digit decimal accuracy for
numbers, random access files, CHAIN between programs with commuon
variables, and the ability to save precompiled code files and
execute the under a special runtime system which occupies less
memory than the complete interpretive BASIC. Consult the person
responsible for software maintenance at your 1nstallation to
determine which BASIC is available on the machine you use.

4.2.1. Calling BASIC

BASIC 1is called by simply typing its name:
BASIC

When loaded, 1t will issue a command prompt ")>", and await a
command. The user can either enter a program, load a previously

written program, or use BASIC as a desk calculator by enterlng
BASIC statements without 1line numbers.

4.2.2. For more information

Refer to the manual "Marinchip 9900 BASIC User Guide" for complete

documentation of the BASIC language and the Marinchip
lmplementation.

37

Marinchip 9900 Disc Executive User Guide

4.3. BOOPY - Binary file copy

BCOPY performs a binary (transparent) copy between two flles. It
permits data to be transferred regardless of its content, and thus

allows creation of an exact copy of the input. BCOPY 1s invoked
by a command of the form:

BCOPX {output)=(input) ,{ number)

{output) 18 the name of the output file and (input) 1s the name of
the input file. BCOPY will copy the data from the input fille ¢to
the output file. If the optional <(number) speclification 1s
supplied, the copy will be terminated after (number) blocks of 128
bytes have been copied. If ({nhumber) (and the preceding comma) are
omitted, the copy will continue until either the end of the 1nput
flle, the end of the output file, or an I/0 error occurs. BCOPY
will always print the number of blocks copied, and will 1indicate
the reason for termination of the copy, unless the reason was the
satisfaction of a (number) specification.

4.3.1. Examples of use

To copy a file PROGI into a file called BKPG1, BCOPY would be used
as follows:

BCOPY BKPG1=PROGI

To copy the f£first 10 blocks of the file SAVFIL into the file
MYPROG, one would use:

BCOPY MYPROG=SAVFIL,10
4.3.2. Restrictions - device files and BCOPY

BCOPY may be used without restriction on disc files. When 1t 1is
used with device files, the user must be aware of the fact that
input from many device files (for example, the system console) 1s
rarely the standard block length, 128. Since the Disc Executive
requires blocks written to a disc file to be multiples of 128
bytes, BCOPY cannot be used to transcribe from a device file to a
disc file. Transfers 1in the other direction (disc file to device
file) will cause no problems. TCOPY, the text copy utility, will
serve for most of the applications where transcription from a
device flle to a disc flle 1s required. TCOPY 1s also more
efficient for such applications since it buffers the 1input 1into

38

Marinchip 9900 Disc Executive User Guide

128 Dbyte blocks. See the section later 1in this manual'descrlbing
TCOPY for more information.

4.3.3. Messages

Error: Specify (ofile)=(1file),{number)
' This message 1s given when the parameters to BCOPY are
bad or omitted.

{number)> blocks copled.
This message Will appear at the end of the copy ¢to
indicate the number of (128 byte) blocks copled.

Copy terminated by end of input file.
This message 1s 1ssued when the end of the input file 1s
reached. Note that this message will appear when the
input and output files are the same size.

Copy terminated by error reading input file.
The operating system has returned an error status on a
read of the input file.

Copy terminated by end of output file.-
This message is 1ssued when the end of the output file is
reached and information remains to be copled from the
input file. The user should be careful that no valid
information was lost in the truncation.

Copy.terminated by errbr writing output file.
The operating system has returned a nonrecoverable error
writing a block to the output file.

File (filename) does not exist.

The named file (input or output) could not be found in
the file directory. .

39

|
J

)

)

Marinchip 9900 Disc Executive User Guide
4.4. BRAINS - BRAINSTORM diagnostic package

BRAINSTORM 1s a comprehensive processor and memory dlagnostic
developed by Marinchip Systems for the Marinchip 9900 computer.
BRAINSTORM includes both confidence tests, which test the computer
under a sSimulated worst-case program situation, and diagnostic
tests, which aid 1n the i1solation of specific problems and their
correction. »

4.4.1. Running BRAINSTORM

BRAINSTORM runs under any Marinchip operating system, and uses the
operating system for all of its I/0. As a result, the diagnostic
need not be reconfigured when system peripherals change. The
package itself occupies the memory between 100 and 2000 hex, so

~any area after 2000 1s avallable for memory testing. BRAINSTORM
1s invoked from operating system command mode simply by typing the

. file name containing the program. In standard released systems,
this file 1s named "BRAINS". Following the file name 18 a
parameter that specifies the test to be run. The format of the
parameter 1s a single character test identifier, an equal sian,
and a 1list of parameters specific to the test selected. The
avallable tests are as follows:

M Memory diagnostic
P Processor (CPU) diagnostic

4.4.1.1. Memory diagnostic

The memory diagnostic is invoked by the parameter string:
M=(start addr),(bytes to test),(passes)

where (start addr) 1s the first address to test, (bytes to test)
13 the length of the area to be tested in bytes, and <(passes) is
the number of times the test 1s to be run before automatically
terminating. The (start addr) and (bytes to test) specification
will be rounded down to even word addresses 1f odd addresses are
specified. For example, assuming BRAINSTORM 1s 1in the standard
file name "BRAINS", and you wished to test 1000 hex bytes (4096
decimal) starting at address 6000 hex, and you wished the test to
lterate 50 ¢times, the command typed in to the operating system
would be:)

BRAINS M=6000,1000,50

40

TR Y

| | . \"\

Marinchip 9900 Disc Executive User Guide
Note that'the £first two parameters are automatically scannhed as
hexadecimal, and the third is automatically scanned as decimal.

Before starting the test, the parameters will be confirmed by the
message:

Brainstorm now testing 6000 through 6FFF, 50 times.

If an error is detected, a two line error message will appear of
the form:

Error in memory test (test description)
Address (fall addr): Expected (good), received {(bad).

The (test description) is the number and name of the specific
subtest that failled (see below). The (fall addr> is the address
which failed. <(bad) is what was read from the address, and (good)
1s what was expected by the test.
At the end of each pass through the test, the message:

End pass (pass).

will appear. If any errors occurred on this pass of the test, the
message:

{(count) errors.
will be appended to the "End pass" message. If any errors have
occurred earlier 1in this execution of BRAINSTORM, whether on the
most recent pass or not,.the message:

Total errors (count).

will appear at the end of the "End pass" message.
4.4.1.1.1. Memory subtests

The following paragraphs describe the subtests performed by
BRAINSTORN. One pass through the memory test consists of running
each subtest once, in the order listed below.

4.4.1.1.1.1. 1A: Clear to zero

Each word in the test area 18 cleared to 4all 2ero bits, then
immediately read back and tested against zero. Falilure to Clear

41

— o oy /&3

Marinchip 9900 Disc Executive User Guide

1s faillure of this test.
4.4.1.1.1.2. 1B: Set to all ones

Each ﬁord in the test area 1is set to all one bits, then
immediately read back and tested against all ones. Failure of all
bits to set 1s considered a fallure.

4.4.1.1.1.3. 2A: Sliding one bit

A pattern of a single one bit with all other bits zero is written
through each word in the test area. Each word 1s read back after
being written and tested against the pattern written. Fallure to
compare 1s a fallure of the test. After all words in the test
area have been completed, the pattern is shifted one bit right,
and the test 1is performed again. The test starts with the pattern
8000 hex and completes with 0001 hex.

4.4.1.1.1.4. 2B: Sl1iding zero bit

A pattern of a single zero bit with all other bits one 1is written
through each word in the test area. As each word 1s written, it
1s 1immediately read back and tested against the pattern stored.
After all words have been tested, the pattern 18 shifted
circularly one bit right, and the test continued until all 16
possible patterns have been tested. The test starts with the
pattern 7FFF hex and ends with the pattern FFFE.

4.4.1.1.1.5. 3: Address interference test

This test 1s intended to detect shorted address 1lines and failing
address decode hardware in memories. Each word in the test area
18 tested. To test a specific word, it 1is set to the hex pattern
1234. Then each address bit in the address of the word under test
1s 1nverted. If the address generated by 1inverting the bit 1s
still within the test area, the pattern DEAD is stored in that
address. After all possible addresses within the test area
generated by inverting bits of the original address have been set
to the pattern DEAD, the original word 1s read back and tested.
If 1t has been changed from the original value of 1234, the
address interference test has falled. The test 1s repeated until
all words 1n the test area have been tested. This test 1s most

42

N R S

0

o

L -~ -

E_ﬂ£§ o

Marinchip 9900 Disc Executive User Guide

effective 1f run over the entire addressing range of a memory
component, as excluding even a small region will eliminate some
possibly defective address bits from the scrutiny of this subtest.
If this test fails, the problem is almost certainly a shorted
address lead or other decoding error that is mapping two different
addresses into the same pemory cell. Careful examination of the
error messages generated by this test should lead to the specific
failing component. (The output from the next subtest, Addressing
Validation, may also be useful).

4.4.1.1.1.6. 4: Addressing validation

The addressing validation test simply writes the address of each
location 1in the test area in the cell at that address. After all
locations have been_so set, they are read back and tested ¢to
contain their own address. This subtest detects addressing
fallures more subtle than those detected by the Address
Interference test above.

4.4.1.1.1.7. 5: Byte addressing -

This subtest writes an ascending value, modulo 256, into all bytes
in the test area. When all bytes have been set, the area i1s read
back byte by byte and tested against the expected value. Since
byte addressing i1s performed in the M9900 processor 1itself by
masking the 16 bit data, this is more of a processor test than a
mamory test. It 1is included since it may detect particular memory
timing problems that only appear in the case of byte addressing.

4.4.1.2. Processor diagnostic

The processor diagnostic is invoked by the paremeter string;

P=(passes)
where <(passes) 1s the number of times the test is to be repeated
before terminating. The diagnostic will test various internal
operations of the processor in each pass of the test, and type an
"End pass." message at the end, exactly like the Memory diagnostic
(see above). If a fallure 1s detected, a message of the form:
Error in CPU test: <(type) instruction falilure.

will be typed, and that pass of the test will be immediately

43

]

N T T —

(—

r—

Marinchip 9900 Disc Executive User Guide

terminated. {(type) describes the subtest that failed. The
possible values of (type) are: :

Basic shift/AND/OR
BLWP/RTWP/status register
ABS

Add

Add bytes

INC/DEC

SWPB

Multiply

Divide

lJump odd parity
SZC/SZCB

SOCB

These refer to the instruction whose failure most 1likely 1led ¢to
the faillure of the subtest. Since the entire arithmetic and
logical processor 18 intedrated onto a single IC, a failure of the
CPU test generally indicates that the CPU chip must be replaced.
Bad memory, however, may often cause the CPU test to fail, so CPU
chip fallure (a VERY rare occurrence) 1s indicated only when the
memory diagnostic runs without error and the CPU test fails.

44

(-

g -

Marinchip 9800 Disc Executive User Guide

~4.5. CREATE - Create a file

CREATE (file),{(size)
or CRE (flle),(size)

The CREATE command creates a file on a disc. If the (file) named
includes a (unit) specification, the file will be placed on that
unit. Otherwise, the file will be allocated on the system disc.
The (si1ze) 1s expressed i1n terms of 128 byte sectors. CREATE will
scan the directory of the unit on which the file 1s being placed,
locate the "best f£it" for the size requested, and enter the flle
in the directory of that unit. If a file by the same name already
exists, 1t will be deleted automatically. If there 1s no free
block on the unit large enough to hold the requested file size,
the message:

Insufficient contiguous space for file.
will be 1ssued and the CREATE command will be 1ignored. If a
DIRECT reveals that there is enough total space for the file but

no single block large enough, the PACK command may be used to
recover the fragmented space, then the CREATE will succeed.

45

Marinchip 9900 Disc Executive User Guide

The DELETE utility may be used to delete a single file, or may be
used to delete a group of flles based on selection criteria
supplied by the user. DELETE 18 invoked by a command of the form:

V} 4.6. DELETE - Delete file or group of files

’] DELETE (file),...
- or DELETE (selection),...

- or DEL ...

:} If called with a conventional file name, DELETE will delete that
single file. If the specification contains the characters "?" or

; X", 1t 1s taken as a selection specification designating a group

rf of files. If a character of the (selection) specification 1s "?",

files with any character 1n that position will be processed. A
specification of the form:

NAME . x

will choose all files with NAME before a period in a file name and
any text after the period, while specifiying:

%x.TYP
chooses all flles with any name and the text TYP after the period

in the name. To choose all flles on a volume, any of the
following specifications may be used:

{(unit)/
<anit)/?????2?2?2?2?2?2??
or <{unit)/x.x

\
When a (selection) specification is used, DELETE will prompt the
] J user with each file name about to be deleted. If the user answers
- the prompt with "Y", the file will be deleted. If the prompt is
answered with "N", the file will not be deleted.

46

Harinchip 9900 Disc Executive User Guide

4.7. DIRECT - List file directory

The DIRECT utility lists file directories. DIRECT may be used to
list the directory entry for a single file, all files on a disc,
or groups of fliles chosen by masking their names. The directory
listing may be either typed on the system console, or sent to a

printer. DIRECT may be 1nvoked with any of the following
specifications:

DIRECT <unit)/,..
DIRECT (file),...
or DIRECT (selection),...
or DIR ...

The first form of the command 1lists all files on the specified
disc unit. Three files will be listed on each line of output from

DIRECT, allowing more files to be seen before scrolling off the
top of a display.

The second form of the command, naming a file, will 1list the
directory item for the named file.

The third form of the command specifies a kselection),which names
a group of files for which the directory items are to be 1listed.
If a character of the (selection) specification is "?", files with

any character in that position will be processed. A specification
of the form:

NAME. %

wilill choose all flles with NAME before a period in a file name and
any text after the period, while specifiying

X .TYP

chooses all files with any name and the text TYP after the period '
in the name.

-

Regardless of the form of call used, the item for each file will
be printed in the format:

FILENAME size start

where "FILENAME" is the file name, "size" 1s the file size 1in
sectors, and "start" 1s the starting block number on the disc.
When l1l1isting all files on a unit, a summary line will be printed

giving the total free space and the largest contiguous free block
avalilable on the unit.

47

Marinchip 9900 Disc Executive User Guide

Multiple specifications may be given to DIRECT, separated by
commas. The action of DIRECT i1s the same as if each specification
were given on a separate DIRECT command. If any specification 1is
preceded by a plus sign, "+", the 1listing generated by that
specification will be sent to the print device, PRINT.DEV. This
permits printed directory listings to be made for later reference.

For example, to print the directories of both unit 1 and unit 2,
one might use:

DIRECT +1/,+2/

48

Marinchip 9900 Disc Executive User Guide
4.8. DU - Disc utility

The Marinchip Disc Utility provides the functions necessary to
test, format, dump, patch, and prepare floppy discs for use with
Marinchip operating systems. Two versions of the Disc Utlility are
available. The standard version, supplied with the Disc Executive
release disc, uses the disc handler within the Disc Executive.
This allows the Disc Utility ¢to be smaller, and usable on any
system without special configuration, but restricts its ability to
perform I/O functions not available through the system (such as
formatting discs). Special versions of the Disc Utility
containing handlers for specific disc devices can be ordered from
Marinchip Systems. Contact your dealer or Marinchip Systems for
price and ordering information. :

4.8.1. Using the disc utility

The Disc Utility 1s loaded and executed simply by typing its name,
DU, to the operating system. The Disc Utility will be loaded and
will prompt the user for a command with an asterisk (X). At this
time, any disc utility command may be typed. At the completion of
each command, the - prompt will reappear. When you have finished
with the disc utility, enter the command "END". It will exit to
the operating system. ' :

4.8.1.1. Disc utility commands

All disc utility commands are one or two characters in length.
Any number of spaces may precede the command name, and at least
one space must follow the command name if any parameters follow.
In the following command descriptions, the parameters expected
will be enclosed in corner brackets. The format of the parameters
18 as follows: '

{disc) This ' parameter 1is the disc number. Discs in the system
are numbered starting from one through the highest
numbered disc in the system.

(track) This parameter 1is the track number on the selected disc.
Tracks are numbered from 0 to 76, for a total of 77
tracks on each disc.

(sector)> This parameter 1i1s the sector number within the selected

disc and track. Sectors, for some sStrange reason, are
numbered from 1 to 26. One of the most common parameter

49

[

Marinchip 9900 Disc Executive User Guide

errors 1s trying to reference sector zero. There 1s no
sector 2zero!

Wherever a specification of the form:

(disc),(track),(sector)

1s used to identify a specific sector, the alternate construction:

(disc).{block)

may be used. The (block) refers to the absolute sector number on
the disc, Wwith the first sector considered as Zzero. This
alternate specification form can be useful when using the Disc
Utility on Disc Executive formatted discs, as the file directory

addresses sectors by block number, rather than track and sector
numbers.

4.8.1.1.1. A - Dump in ASCII

A (start byte),(word count)

The ASCII dump command dumps the contents of the sector buffer in
ASCII. If all parameters are omitted, the entire buffer will be
dumped. If a start byte 1s specified, the word containing that
byte will be dumped. If both a start byte and a 1length are
specified, the number of words requested will be dumped starting
with the selected byte. The sector buffer is read by the "R"
command and written by the "W" command, both described below.

4.8.1.1.2. CD - Copy disc

CD (disc>) (disc>

This command coples the entire contents of the first disc to the
second disc. It 1s a fast and effective way to back up the
contents of one disc on another. Any data previously stored on
the second disc will be destroyed. This command requires the user

to confirm that 1t 1is OK to wipe out the data on the second disc.
If the command:

CD 1 3

is typed, the question:

Really want to destroy data on disc 3?

50

I G R

Marinchip 9900 Disc Executlve User Gulde

will appear. This must be answered "yes" before the operation

. Wwill Dbegin. Any other answer will cause the command to be

ignored.

4.8.1.1.3. CT - Copy track

CT (disc),(track> (disc),(track)

This command copies an entire track from the first <(disc),(track)
to the second. Note that the source and destination tracks may be
different.

4.8.1.1.4. D = Dump in hexadecimal

D ¢ start byte),(word count)

The Dump command dumps the contents of the sector buffer in
hexadecimal. If all parameters are omitted, the entire buffer
will be dumped. If a start byte 1s specified, the word containing
that byte wi1ll be dumped. If both a start byte and a length are
specified, the number of words requested will be dumped starting
with the selected byte. The sector buffer is read by the "R"
command and written by the "W" command, both described below.

4.8.1.1.5. END - End disc utility

END

The End command causes the Disc Utillity to terminate. control
will return to the operating systen.

4.8.1.1.6. N - Read and dump next sector

N

The sector following the 1last sector read by an R, RA, or RD
command 1s read and dumped. The sector 1s dumped 1n the format
last used to dump a sector. The N command 1s primarily used when
reading through a disc looking for some particular data. The
address of the sector being read will be printed before the Ssector
1s dumped. .

51

Marinchip 9900 Disc Executive User Guide
4.8.1.1.7. PA - Patch buffer

PA (start byte)

This command allows the contents of the sector buffer to be
patched. If <(start byte) 1s omitted, 2zero 1s assumed. The
command will display the current offset and the contents of the
word at that offset. If a carriage return 1i1s typed, the next word
will be displayed. If a number 1s entered, it will replace the
word at the current 1location. An up-arrow (A) will cause the
previous word to be displayed, and a 1right corner bracket ()
followed by a number will set the offset to that byte address.
Numbers entered for this command will be assumed decimal unless a
leading 2zero appears before the number, in which case hexadecimal
will be assumed. Entering an at sign (@) will stop the Patch
command and return the user to normal command level.

4.8.1.1.8. R - Read into buffer -

R (disc),(track),{sector)
This command reads the selected sector into the sector buffer.

Once read 1n, the data may be dumped by the "D" command, patched
by the "PA" command, and written back out by the "W" command.

4.8.1.1.9. RA - Read and dump in ASCII

RA (disc),(track),(sector>
This command reads the selected sector into the sector buffer and

then dumps 1t 1n ASCII. The action of this command 1s 1identical
to an "R" command followed by a "A" command.

4.8.1.1.10. RD - Read and dump in hexadecimal
RD (disc),(track) ,(sector)
This command reads the selected sector into the sector buffer and

then dumps it in hexadecimal. The action of this command 1is
identical to an "R" command followed by a "D" command.

52

Marinchip 9900 Disc Executive User Gulde

" 4.8.1.1.11. VD - Validate disc

VD (disc)
This command reads every sector on the selected disc. If any
errors occur, they will be logged and the command will continue.

This command 1s i1ntended for incoming inspection of new discs and

periodic checking to make sure that no bad sectors are lurking on
a disc.

4.8.1.1.12. VT - Validate track

VT (disc),{track)

This command 1s identical to the Validate Disc command described
above, but only one selected track 1is validated.

4.8.1.1.13. W - Write

W (disc),{(track),{(sector)

The data 1n the sector buffer are written out to' the selected
sector. _ _

4.8.1.1.14. WB - Write back

WB

The data in the sector buffer are written back to the sector from.
which they were originally read with the R, RA, RD, or N command.
The WB command may be used only if no interyvening command which
reads into the sector buffer has been used since the sector was
originally read. The WB command i1s normally used to write back
data read in with the R command, then patched via the PA command.

53

R [— (D

Marinchip 9900 Disc Executive User Guide

4.9. EDIT - Text editor

The Marinchip Text Editor (EDIT) 1s a line-oriented context editor
based on the Project MAC editor originally developed at MIT. The
editor offers powerful interactive editing taking full advantage
of the full-duplex terminal support and instantaneous response
offered by the Disc Executive. The editor uses the file system to
automatically page files larger than memory to disc to allow files

much 1larger than system memory to be edited without explicit user
effort.

4.9.1. Calling the editor

The most general form of call on the editor is:
EDIT (output file)=(input file>

Either or both of these file names may be omitted, with results
illustrated by the examples given below.

EDIT MYFILE Reads in MYFILE, and stores
output back in MYFILE.

EDIT NEW= Creates file NEW from text
entered from the console.

EDIT =LISTNG Reads in file LISTNG to be
examined, but not updated.

EDIT NEW=OLD Reads in file OLD, stores
updated output 1n file NEW.

EDIT Gives user complete control
over input and output
handling via editor
commands. ’

4.9.2. Using the editor

A description of editor commands 1s beyond the scope of this
manual. The user 1s referred to the user guide for the editor
(see reference below) for a description of the editor commands.

54

Marinchip 9900 Disc Executive User Guide

4.9.3. Temporary flles

) If the file being edited 1is larger than memory, the editor will
i use the two system standard temporary files, "TEMP1S$" and
"TEMP2S", to page the file. Each of these files must be larger
ﬁi than the file being edited. If these files are missing, the:

message "Buffer impasse." will be given and additions to the file
will not be permitted.

A TN SR AW Rl T

| .
.l 4.3.4. For more information

? 11 Refer to the manual "Marinéhip 9900 Text Editor User Guide" for
§ descriptions of editor commands, and further information about how
to call and use the editor.

B S5

- _

Marinchip 9900 Disc Executive User Guide

4.10. FDIAG - File diagnostic

FDIAG 1s a program which ¢tests I/O0O on a disc filé, and by
implication tests the disc storage that underlies the file and the

operating system’s file handling software. The program 1s8 invokead
by a command of the forn:

FDIAG (file name)

where <(flle name) 1s the file to be tested. THIS FILE WILL BE
OVERWRITTEN, DESTROYING ANY DATA PREVIOUSLY IN THE FILE. The user
can test a specific disc unit or area by placing a file there,
then calling the file dilagnostic specifying that file.

4.10.17. Flle diagnostic operation

The file diagnostic operates by writing unique patterns 1in
successive blocks (128 bytes) of the file until the end of file 1s
reached. Then, the file 1s reset to the beginning with the SEEKS
request and the file 1s read back. The data 1n each block is
validated for internal consistency, and then checked to make sure
that the sector read was the expected sector. The test continues

until the end of.file 1s reached. If the test finds no errors,
nothing will be printed.

4.10.2. Error messages

~

Cannot open named file.

The file named on the FDIAG command could not be found in
the file directory.

Write error on block (number).

The operating system returned an error status on the

write - of the specified block. The file diagnostic
terminates.

Seek error.

The operating system returned an error status on the
SEEKS request to reset the file to the beginning. This

indicates a software error in the operating system or the
file diagnostic itself.

Read error on block (number).

The operating system returned an error status on the read
back of the specified block. The diagnostic continues

56

Marinchip 9900 Disc Executive User Guide

with the next block.

Bad data for block <(number). First bad byte 1s <{(number).
;} (Expected value: <(number)) :

There was a data error in the block that was not detected
by the operating system’s disc handler. The diagnostic

detected the error by internal redundancy in the block.

The failling block number, first bad byte, and the
expected value are printed on the error message, then the

block 1s dumped 1in hexadecimal. The test continues with
the next block.

Wrong block read. Expected: (number), received: <(number)

C_J

)]

The block read was internally consistent, but is not the
block that was written at the address that was read back.
This error indicates an addressing problem 1n either the
disc hardware or the operating system’‘s file handler.

57

J

N D S T S R I

)

— C

Marinchip 9900 Disc Extecutive User Guide

4.11. LINK - Linker

The Marinchip Linker 1s used to builld an executable program from
the relocatable code produced by the Assembler or the high-level
language compllers. The LinKer 1s controlled by simple commands
entered from the user’s terminal, and accepts 1ts i1nput and places
its output in normal operating system files. The Linker generates
strailghtforward English error messages for all abnormal events
that occur during the process of 1l1inking. The Linker uses a
virtual memory paging technique to allow 1tself to builld programs
larger than the memory avallable to the Linker as a work area. In
fact, the Linker can produce programs larger than the memory
avallable on the machine on which 1t 1s being run. This can be

useful as programs for other users with larger memories can be
generated on a minimal machine.

4.11.1. Linking a program

The linker may be used in two modes: normal mode, where commands
are entered from the keyboard and the linking process 1s performed
in an interactive mode, and shorthand mode, where all the 1linking
information is entered on the line that invokes the linker.

4.11.1.17. Shorthand linking

In shorthand mode, the linker is called by typing the statement:

LINK (out)’=[@)<(1in1)>,[R)<in2),...

to the operating system when at command level. "LINK" is the name

of the linker, (out) 1is the name of the executable file to be .

created, and <(ini1)>, <(1in2), etc., are the names of the relocatable
files that are to make up the executable program. If the name of
an input file 1s preceded by an at sign (@), 1t is assumed to be a
text file containing Linker commands (see below for descriptions
of commands), rather than a relocatable file. If the input files
named satisfy all external references, the executable file will be
created and the 1linker will terminate normally. If undefined
symbols remain, they will be listed, and the 1linker will enter
normal interactive mode (see below) to allow the user to load
files which define the undefined symbols.

For example, to create an executable prbgram called "OBJ" from
relocatable files named "MAIN", "CSUB1", "CSUB2", and "CSUB3", the
following command would be used:

58

fadde st R S A

LT YRS

‘r—“—‘
| C—

)

) O g O

]

[7
= 1

-

C—

Marinchip 9900 Disc Executive User Guide
LINK OBJ=MAIN,CSUB1,CSUB2,CSUB3

4.11.1.2. Normal interactive linking

The Linker 1s called from the command mode of the operating system
by simply typing its name, LINK. The operating system will load
the Linker and execute it. When the Linker receives control, 1t
will prompt the user for a command with a sharp sign (#).

4.11.1.2.1. Defining the output file

Once the Linker has been called, the user must specify in which
file the executable file is to be placed. The OUT command is used
to do this. The statement:

OUT (file name)

informs the Linker that the executable program is to be placed 1in

the file <(file name). Only one OUT statement may be used in any
call on the Linker.

4.11.1.2.2. Specifying the program base

Normally the Linker will create an executable program starting at
address 0100, the standard system starting address for user
programs. The user can override this assumption by supplying a
BASE command before the first input file is named. The statement:

BASE (address)

will cause the executable program to be built starting at the
specified hexadecimal (address) (that is, relocatable code will be
loaded starting at that address). This feature 1is primarily of
use when generating the operating system, or when writing programs
intended to concurrently reside in memory. Normal user programs
need not specify a BASE statement. The specified base address
should be a multiple of 256 bytes (0100 hex). If the address
supplied 1s not a multiple of 256, 1t will be rounded down to the
preceding 256 byte boundary.

59

1 |

—

— - —_——] I

Marinchip 9900 Disc Executive User Guide

4.11.1.2.3. Naming the input file(s)

Oonce the output file has been specified, the user should specify
all the programs that are to be linked together to make up the
executable program. This will always 1nclude the main program
created by the Assembler or compiler, and will frequently include
other separately assembled or compliled subprograms, oOr programs
from the system 1library. The flles containing the relocatable

object code for these programs should be named on one or more IN
commands. The statement:

IN (file name),(file name),...

will link the named files into the executable program. One or

more <(file name)s may be specified on the IN statement, and any
number of IN statements may be used.

The references between separately compiled programs are made by
means of external and entry symbols. These symbols are identified
by six character names in both the program defining them and any
programs referencing them. As programs are bullt into the final
executable program, the Linker matches up these symbols and
resolves the references to them. If after the execution of an IN
statement there are references still undefined, the Linker will
prompt the user for the next command with a minus sign (-) instead
of the normal sharp sign (#). The user can then, if desired, list
the still-undefined symbols by using the REF command (see below).
If the main program is IN’d first, the 1inking process 1s complete

when the - prompt goes away, since all references will have been
satisfied.

The IN statement may also be used to cause the Linker to process a
set of commands stored in a file. If a file name on an IN command
1s preceded by an at sign (@), then the commands from that file
will be read and processed as 1f they were entered directly from
the Keyboard. Any Linker command may be used in a command file,
and command files may be nested 1limited only by the system’s
restriction on concurrently open files and the amount of available
memory. For example, 1i1f the. file NEWPROG.LNK contains the
commands to link a program, it would be invoked by:

IN @NEWPROG.LNK
4.11.1.2.4. Table of contents files

The IOCATE command (which may abbreviated to LOC) specifies a file
containing a table of contents of a library of subprograms. The

60

|

|

S

—J

1

—

.

-

L

ﬁ
-

e

—_

S

N
LN

G

M

— :‘L;j

-/ N

— -

Mj ‘

r

oo

—

[—‘;—j‘

o~

3

e

Marinchip 9900 Di=¢c Executive User Guide

statement:
LOC (file name),{file name),...
identifies each of the (file name)s as a table of contents file.

Each table of contents file is a text file containing one or more
lines. Each line identifies a separately assembled or compiled
subprogram file and names . the external symbols defined in that
subprogram. A table of contents statement 1s of the form:

{ subprogram file name)' (symbol),{symbol),...

where (subprogram file name) is the file name of the relocatable
file exactly as it would be used on an IN statement to include it
in the 1link, and the (symbol)s are the external symbols defined in
that subprogram.

When the 1linker reaches the end of a 1link (indicated by the END
gstatement, see below), 1f there are any undefined external
references, it will search the table of contents file entries in
the order they were specified on the LOC statements, and attempt
to resolve the undefined symbols. If the inclusion of a file
based on its appearance in a LOC list results in the appearance of
a new undefined symbol, the LOC list will be searched again in an
attempt to resolve it. This process will continue until either
all external symbols have been resolved, or a search of the LOC
list fails to resolve any outstanding symbols, in which case the
Linker will abandon the search.

When -performing an interactive link, it 1is frequently desired to
see if the LOC files specified will resolve the undefined symbols
outstanding at some point in the link. The FETCH command, which
1s simply the statement:

FETCH

will cause the LOC 1list search to be performed exactly as it 1is
done at the end of the link, but the Linker will not terminate at
the end of the FETCH.

4.11.1.2.5. Listing the memory map

At the end of the 1inking process, the memory map may be listed by
entering the statement:

MAP (+([(t1ltle)])

61

PRy
|
————

Harinéhlp 9900 Disc Executive User Guide

This will type one 1line for each program loaded. The program
name, defined via the IDT assembly directive, or by a
specification 1in the compilation, will be listed followed by the
address at which that program starts and the last address occupied
by that program. This MAP 1s useful in program debugging, since
it permits turning absolute addresses in the linked program back
into relative addresses in the programs that made 1t up.

If nothing follows the MAP command, the memory map will be typed
on the user’'s terminal. If a plus sign (+) follows the MAP
command, the map will be printed on the standard printer,
PRINT.DEV. If the plus sign 1s used, 1t may be followed by a

title to be printed on the printer before the memory map 1is
listed.

4.11.1.2.6. Closing out the program

After all the files that make up the program have been 1loaded by
naming them on IN commands, all that remains is to tell the Linker

to write the executable program into the output file. This 1is
done by the statement:

END

If there are any unresolved external symbols at the time the END
statement is entered, they will be listed following the warning
message "Undefined symbols:". The presence of undefined symbols
will not prevent the output program from being generated, but will
cause it to error if any of the symbols are referenced . during
execution. After the Linker has written the executable program to
the output file, it will exit to the operating system.

4.11.1.3. Comments

Comments may be included in the input to the Linker as lines which
contain a period 1in column 1. Such lines are 1gnored by the
Linker, but are useful to identify files used with the "@" feature
on the IN command.

4.11.1.4. Executing the program

Programs generated by the Linker may be executed simply by typing
the name of the flle containing them to the operating system when
1t expects a command. The flle contalining the user program will

62

-

—

-

—
|
e

L

| SS—

i
—

Marinchip 9900 Disc Executive User Guide

be loaded and executed.
4.11.1.5. If there ére undefined symbols

If you have named all the files that make up your program on IN
statements and are still getting the "-" prompt that indicates the
Linker still has undefined symbols, the command: -

REF

may be used to list them. The format of the listing will be one
line for each symbol containing the text:

(symbol) of (program)
where (symbol) is the undefined symbol name and {(program)> 1is the

name of the program that referenced it. Note that a symbol may
appear in more than one message if it 1s referenced by more than

one program.

4.11.2. Sample Linker use

‘The following presents an annotated example of using the Linker to

construct a program. Let us suppose the user’s main program
object code has been put in the file MAIN by a compiler, and that
subprograms SUB1, SUB2, and SUB3 are used by the program in MAIN.
The object code for these three subroutines are in the files
CSUB1, CSUB2, and CSUB3 respectively.

.LINK The user loads the linker

: from the operating system
command level. : :

#OUT OBJ The Linker prompts the user

: with a-sharp sign, and the
user names the output file
OBJ . £t0 hold the generated
program.)

#IN MAIN The prompt reappears, and

: the user uses the IN
command to name the maln
progranmn.

-IN CSUB1 The user gets the "-"
prompt indicating that more
files are needed. The fille
CSUB1 1s named.

-REF The user decides to list

o3

Marinchip 9900 Disc Executive User Guide

undefineds.

SUB2 of MAIN The Linker lists them

SUB3 of MAIN

SUB3 of SUB1 Note that SUB1 also

_ references SUB3.

-IN CSUB2,CSUB3 The user names the rest of
the required files.

#MAP The 1linker 1is happy and
returns to the sharp sign.
The user requests a memory
map.

MAIN 0100-02CD The map 18 typed out

SUB1 02CE-030B

SUB2 030C-03FB

SUB3 03FC-0511

#END The user asks to end
linking

.OBJ) And calls his program

Enter the first data point: The user‘s program 1s 1n
control

4.11.3. Linker error messages

The following error messages can be generated by the Linker; each
is explained. When there is a common user error that causes this
error, it will be mentioned.

Bad character "™ char)" as item type.
The character <(char) was found in the object code file
and 1s not valid. This normally occurs when the file you
mention on an IN statement 1s not an object file created
by the Assembler or a compller.

Bad character in number field.
A bad character was found in a numeric field of object
code. Suspect clobbered object code file or trying to
load non-object code.

Input file 1I/0 error.
Error reading file on IN statement. Was it properly
created by the Assembler or compiler? This can also
result from a disc hardware error.

Duplicate starting address in program < prog) 1gn0red .

64

\
| —

]

‘4,\ 7 ,

L

)

i

Marinchip 9900 Disc ExXecutive User Gulde

The program (prog?>, which was Just named on an 1IN
statement 1s a main program with a starting address, but
another main program has already been loaded. The first
starting address will be used for the program being
linked. '

Duplicate definition of (symbol) ignored 1in (prog).
The program (prog)> defines symbol <(sSymbol), but this
symbol has already been defined 1n another program
previously named 1n an IN statement. The second
definition 1s ignored.

Absolute origin of <(addr)> in <(prog)> 1is below base of (base):
ignored.

The program (prog) contains absolute 1load 1information
which attempts to load below the Linker’s standard load
base. This most often results from misuse of the AORG
directive in Assembly programs. .

Checksum error.

The program being 1loaded has a checksum error in the
object code. Has it been modified?

Checksum missing from record.

The program being loaded lacks a checksum on a record.
Has 1t been modified?

End-of-record sentinel missing.

The program being loaded has a malformed record. Has 1t
been modified?

Interna; error: origin below load base.

If you have a program that causes tﬁis error, Marinchilp
Systems would like very much to see it.)

Error swapping out page.
Error swapping in page.

These messages are caused either because the file named
on the OUT statement was too small to hold the program
being 1linked, or by a hardware error on the output file.

Bad 1nput file specification.

65

Marinchip 9900 Disc Executive User Guide

The file named on the IN statement does not exist, or the

file name 1s not well formed.

Bad output file specification.

The file named on the OUT statement cannot be created, or
the file name 1s not well formed.

Output file already specified.

An OUT statement was entered, bbut an output file was
already defined by a previous OUT statement. The second
OUT statement 1s ignored.

No output file specified.

An IN statement has been entered, but no OUT statement
has been entered yet. The IN statement 1s ignored.

Cannot open entry table. Processing continues.
The LOC specified (file name) cannot be found.

Entry table file input error.

The LOC specified (file name) could not be read 1n.
Insufficient table space.

The LOC-generated cross reference list of symbols and the
filles 1in which they were defined overflowed avallable

memory space. Use a shorter list, or IN the required
filles explicitly instead of using LOC. '

66

TRAY OIS VAN

SR

—

Marinchip 93800 Disc Executive User Guide
4.12. PASCAL - Sequential Pascal compliler

Marinchip Pascal 1s based on the Sequential Pascal compiler
developed by Per Brinch Hansen for the PDP 11/45 at Caltech.
Marinchip Systems has converted the compiler to run on the M9900
CPU and has 1interfaced it to use the 1/0 facilities of the Disc

Executive, permitting it to 1interchange files with all other
Marinchip software.

4.12.1. Calling the compiler

The Pascal compiler 1s called with a command of the form:

PASCAL((source),(listing),(object))

where <(source) 1is the Pascal source program to be compiled,
{listing) 18 the disc or device flle where the compiler listing is
to be sent, and <(object)> 1is the file in which the object code
generated by the compiler is to be stored.

4.12.2. Executing the program

An (object) flle produced by the compiler i1s executed 31mply by
typing its name. No linking process 1s required.

4.12.3. Temporary files

The Pascal compiler requires that the files "TEMP1S$" and "TEMP2S"
be present on the system disc. If these files are not present,
the compilation will abort with an error message.

-

4.12.4. For more information

See the manual "Marinchip 9900 Pascal User Guide" for more
information on the Pascal compiler.

67

I
|

Marinchip 9900 Disc Executive User Guide

4.13. PACK - Compress files on disc

The Disc Executive allocates and stores files contiguously on
discs. The file allocation process attempts to maximise the
contigquous space avallable, but the process of file creation and
deletion may result in the space on a disc becoming fragmented so
that even though there 1s enough free space to create a new file,
no single block 1s large enough to hold 1it. The PACK utility
compresses the flles on a disc and collects all the free space
together into one block. After running PACK on a disc, a flile may
created on 1t with a size equal to the total free space avallable.

4.13.17. Using PACK

PACK 1s called with a command of the form:

PACK [x)<unit)/

where <(unit) 1s the disc unit where the disc to be PACKed 1is
mounted. If no leading asterisk 1s specified, a "safe pack" will
be done. If the leading asterisk 1s supplied, a "fast pack" will
be performed. The difference between a safe and fast pack 1is

explained in the following section. The following are examples of
PACK commands:

PACK 2/
PACK %2/

4.13.2. Error recovery in PACK

During the course of PACKing a disc, it is possible that all
directory items may be changed and all files on the disc moved to
new locations. This massive transformation on a disc makes the

impact of an 1/0 error potentially catastrophic. PACK makes every
effort to avoid errors and to minimise their effects.

If PACK 1s called with no leading asterisk, a "safe pack" will be
done. 1In this form of PACK, after moving each file, the directory
will be updated to reflect the changes. Normally, an I/0 error
during a safe pack will destroy at most only the one file being

copied, and then only 1if its new location overlaps its old
location.

If PACK 1s called with a leading asterisk, all files will be
moved, and then the directory will be written out at the end. An

68

—_— L., .

I

(o

Marinchip 9900 Disc Executive User Guide

I/0 error during a fast pack will usually totally destroy the
contents of the disc.

In the case of error, PACK always analyses the damage done and
reports it to the user. Because any PACK may result in the 1loss
of some data 1f an I/0 error happens, we urge you to first back up
a disc using the CD command in DU before performing a PACK. If a
backup 1s first made, then you may do a fast pack with impunity,
Knowing that i1f the PACK destroys the disc, you can always go back
and recopy your backup and try again.

69

Marinchip 9900 Disc Executive User Gulde
4.14. PREP - Initialise directory on unit

Before files may be created on a new disc, a Disc Executive file
directory must be created first. Only once the file directory 1s
present may CREATE be used to allocate flles on the disc. PREP 1s

used to create that fille directory. PREP 1s called by the
command :

PREP (unit)/[,{specification)...]

where <(unit) is the disc unit containing the new disc to be
PREPed. If no (specification’s are given, the disc will be set up

as a normal single density, single sided disc. The directory will
be allocated to hold up to 140 files.

When using double density or double sided discs, {(specification>’s
are used to inform PREP of the modes 1n which the discs will be
used. Note that PREP simply writes out the Disc Executive
directory, and assumes that the disc 1t 1s processing has been
previously formatted for access. While single density, single
sided discs may be used right out of the box without formatting,
1s 1s usually necessary to format discs to be used in double
density or double sided modes. Refer to the documentation for the

FORMAT program for the disc system you are using for information
on disc formatting.

The specification "DS"™ causes the disc to be marked double sided.
The flle storage capacity and directory capacity are doubled.
Note that in a system with double sided drives, a disc MUST be
prepped with the "DS"™ specification if it is physically a double
sided disc (as indicated by the index hole placement).

The specification "DD" causes the disc to be marked double
density. The file storage capaclty and directory capacity are
doubled. A disc may be both double density and double sided. In
this case the directory and flle storage capacity will be four
times that of a normal single density, single sided disc.

If a number appears as a {(specification), the flle directory on
the disc will be allocated to provide space for the specified
number of files. This form of specification may be used to
override PREP’s assumed directory sizes for speclal applications.

Examples of PREP commands are:

PREP 2/ Single density, single sided
PREP 2/,DD Double density, single sided
PREP 2/,DS - Single density, double sided
PREP 2/,DS,DD Double density, double sided

70

512
o

Marinchip 9900 Disc Executive User Guide

PREP 2/,DD, 500 - Double density, 500 file directory

Before writing a new directory on a disc, PREP examines the disc
to see 1f a directory previously existed. If either a Disc
Executive or Network Operating System directory is present on the
disc, PREP will ask the user:

Really want to destroy data on disc (unit)>?
which the user must answer "YES" before PREP will write the new
directory to the disc. This query protects against inadvertant

destruction of data by PREP, while still allowing discs to be
re-PREPped without beilng reformatted.

A

Marinchip 9900 Disc Executive User Guide

4.15. RENAME - Rename file

The RENAME utility permits you to change the name of a disc file
without affecting the information stored in the file. The call:

RENAME (new name)=(o0ld name)

will change the name of disc file (old name) to (new name). If
one name 1s of the form "(unit)/(filename’", both names must be of
that form, and the (unit)>s must agree. If no file with (o0ld name)
can be found, or a file with (new name) already exists, an error
message will be given, and no change will occur.

For example, to rename file GARBAGE.TXT to be called BACKUP.WRD,
one would use:

RENAME BACKUP.WRD=GARBAGE.TXT

72

Marinchip 9900 Disc Executive User Guide
4.16. ROMPGM - PROM programming utility

The Marinchip PROM Programming Utility allows 2708 PROMs to be
programmed using the Cromemco Bytesaver PROM Programmer. The PROM

Programming Utility programs the PROM, then verifies that the data
has been correctly stored.

4.16.1. Programming PROMs

4.16.1.1. Erasing the PROM

The PROM to be programmed should first be completely erased by

~ exposing it to a short-wave ultraviolet lamp. Make sure that the

PROM 1s completely erased, as an incompletely erased PROM may
surprise you with random data drop-outs at elevated temperature or
after a period of time. Follow the exposure recommendations for
the eraser you are using, and don‘t short cut the erase time, NOT
EVEN ONCE. This paragraph is written from cruel experience. The
experience that PROMpted this warning 1s one that cannot be
recommended to any other sentient being.

4.16.1.2. Verifying the PROM 1is erased

An erased 2708 PROM will have all bits set. To verify that the
PROM 1s completely erased, insert 1t 1n one of the Bytesaver
sockets, then bring up the system and enter the command:

ROMPGM E=(slot)

where <(slot) 1s the socket number in the Bytesaver where the PROM
was placed. If the PROM 1is properly erased, nothing will be
printed. If unerased words remain, thelr address and contents
will be dumped. When a PROM falls erasure verification, insert it
back 1n the eraser and try agailn.

4.16.1.3. Programming the PROM

The data to be placed in the PROM should be loaded 1nto RAM. Make
sure that the PROM programming utility does not overlay the data
you are placing 1in PROM. The "Program power" switch on the

73

Marinchip 9900 Disc Executive User Guide

Bytesaver should be turned "ON", then the command to 1nvoke the
PROM programming utility should be entered. From operating system
command level, this is:

ROMPGM P=(slot),{start addr>
or ROMPGM PE=(slot),({start addr>
or ROMPGM PO=(slot),{start addr>

where (slot) 1s the socket number in the Bytesaver where the PROM
to be programmed has been placed (the sockets are numbered zero to
3even, right to left, and the numbers are below the sockets on the
board), and (start addr)> 1s the address 1n RAM where the data to
be programmed into the PROM starts. The (start addr) must be an
even word address. The process of programming takes about two
minutes. After programming 1s complete, the PROM 18 read back and
compared with the data 1in RAM. If the data matches, the PROM
Programming Utility simply exits to the operating system. If
errors are found, a . line will be printed for each word that falled
to compare. The error message 1s as follows:

(RAM addr): <(RAM data) (PROM addr)>: <(PROM data)

where (RAM addr) and (RAM data) are address and data from RAM, and
(PROM addr) and (PROM data) are the address and data in PROM. If
the error or errors seem to be the failure of a few bits to set to
zero, try programming the PROM again. Some less-than-prime PROMs
take more than the recommended number of programming passes to
program all bits. If the PROM data is all FFFF, make sure the
"Program power" switch 1is on.

If the PE= or PO= forms of the program command are used, the data
to be written 1nto the PROM will be taken from the even or odd
bytes, respectively, of the 2K area starting at (start addr». In
other words, the command:

ROMPGM PE=0,4500 ,
will write the contents of byte 4500 into the first byte of the
PROM, the contents of byte 4502 1into the second byte of the PROM,
the contents of byte 4506 1nto the third byte of the PROM, etc.
If the PO= command had been used, bytes 4501, 4503, and 4507 would
have been copled to the PROM. The PE and PO commands are useful
when a program that has been developed in RAM 1s to be placed 1in

16 bilt wide PROM, where all the even bytes reside in one PROM and:

the odd bytes in another PROM.

74

Marinchip 9900 Disc Executive User Guide
4.16.1.4. Turning off Program power

When the PROMs have been programmed, make sure you turn off the
"Program power" switch on the Bytesaver. FAILURE TO DO THIS WILL
CERTAINLY LEAD TO ZAPPING ALL THE PROMS IN THE BYTESAVER. Since
systems using the Bytesaver normally use it to hold the Debug
Monitor and Disc Boot PROMs, this means that the system will be
down until those PROMsS can be reprogrammed. Marinchip Systems can
furnish, on request, information on how to modify the Bytesaver to
prevent destruction of PROMs in selected sockets.

4.16.2. Verification of existing PROMs

ROMPGM can also be used to verify a PROM against data in RAM
without first programming the PROM. If called:

ROMPGM V=(slot),(start addr)
or ROMPGM VE=(slot),(start addr)
or ROMPGM VO=(slot),{start addr)

the verification of data in the PROM in the designated (slot) will
be carried out against the data at <(start addr), and any
discrepancies will be 1listed 1n the format explained 1n the
section "Programming the PROM"™ above. Since ROMPGM automatically
verifies data following programming, this feature 1s primarily
useful for verifying .existing PROMs against a master data file.
If the PE= or PO= commands were used iln creating the PROM (see
"Programming the PROM"™ above), the VE= or VO= command must be used
when verifying programming. It will cause the data for
verification to be loaded in the same manner as the data used in
programming the PROM.

75

Marinchip 9900 Disc Executive User Guide
4.17. SIZE - Determine space required for file

The SIZE utility program examines the contents of a file and
calculates the number of sectors required to hold the text found
in the file. SIZE works on text files, relocatable files, and

executable programs produced by LINK. SIZE 1s 1invoked by the
command:

SIZE (file name)

where <(flle name)> 18 the name of the file whose size 1s to be
calculated. Note the distinction between the file size printed by
SIZE and the size printed by DIRECT: DIRECT prints the number of
sectors allocated to the file, while SIZE prints the number of
sectors actually used by the contents of the file.

76

f_
/ ‘
—

Marinchip 9900 Disc Executive User Guide

4.18. TCOPY - Text file copy utility

The Text Copy Utility i1s a very simple utility program provided by
Marinchip Systems for the 9900 computer system. Its usefulness
transcends its ‘simple function of moving a text file from one
location to another because of the generality of the flle system
that underlies the program. Since all peripheral devices are
treated as files by the Marinchip operating systems, the Text Copy
Utility can be used for functions as diverse as the following:

. Copying a disc file from one disc to another.

. Concatenating several files into one large file.
. Listing a disc file on the console.

. Making a hard copy of a listing stored on disc.

...and of course all the obvious permutations and combinations
that the above immediately suggest.

4.18.1. Using TCOPY

The Text Copy Utlility 1s invoked simply by typing the name of the
file that contains it to the operating system when the operating
system prompt appears. The utility 1i1s stored in the file TCOPY on
a standard Marinchip system disc. Following the name of the
Utility program, the destination file 1is specified, followed by an
equal sign, and one or more source file names separated by commas:

TCOPY (ofile)=(1file),(1file),...

The <(ofile)> and (ifile) specifications may be fully general file
names, as described in the manual for the operating system being
used, and may be elither device files or disc files.

The action of the command will be to copy the input files into the:
output file, from left to right as specified on the command. The
result will be an output file consisting of-all the lines in the
input files concatenated. Of course, if only one 1input file 1is

specified, the output file will be an identical copy of the input
file.

4.18.1.1. Examples of use

To 1list the contents of the file MYPROG on the console:

TCOPY CONS.DEV=MYPROG

77

l
%ﬁ

Marinchip 9900 Disc Executive User Guide

To concatenate the files PROGI, SUB1, and SUB2 1into the file
BIGGIE: .

TCOPY BIGGIE=PROG1,SUB1,SUB2
To send the file USRDOC to the printer:
TCOPY PRINT.DEV=USRDOC

To read a paper tape 1into the file STUFF:

TCOPY STUFF=PTR.DEV
4.18.1.2. Error messages
The followlng are a list of error messages that may be generated
by the Text Copy Uti1lity and thelr causes:
Error: Specify (ofile)=(1file),(1flle),(1flle),
This message appears whenever a syntax error 18 detected 1n the
specifications. Probably one of the file names is badly formed,
or a delimiter between file names 1is incorrect.

Error reading file (ifile).

An I/0 error was encountered reading from the named input file.

The output file 1s closed, and any files following the named files
are ignored.

Error writing output file.

An I/0 error was encountered writing the output file. The Utility
immediately terminates.

File (file) does not exist.
The named file could not be opened. If this is the output file,

the command 1s totally ignored. If an input file, the output file

1s closed, and any input files following the named file are
ignored.

78

Marinchip 9900 Disc Executive User Guide
4.19. WORD - Word processor

The Marinchip Word Processor (WORD) 1s a powerful yet easy to use
text formatting language. It contains a set of basic commands
sufficient for most text formatting applications, and provides a
comprehensive string and macro facility so that the basic language
may be extended by the user for more complex formatting tasks.
Facilities built into WORD include:

. Right justification, centering
Automatic reformatting for different output devices
Multiple column output
Automatic assignment of page and section numbers
Automatic generation of Table of Contents

4.19.1. Using WORD
The input file for WORD 1s prepared using the Text Editor, then
WORD 1s called to format the text:
WORD (output file)=(input file)
where <(input file) is the file containg the text to be formatted,

and (output file) is the disc or device file where the formatted
text will be placed.

4.18.2. For more information

Refer to the manual "Marinchip 9900 Word Processor User Guide" for
information on how to prepare text for WORD,. and further
information on how WORD 1s used.

79

Marinchip 9900 Disc Executive User Guide

5. System library subroutines

The system disc supplied by Marinchip Systems contains a number of
relocatable subroutines intended for use in user programs. These
routines are described by the sections below. The sections are
listed by the name of the file containing the subroutine on the
system disc. The entry points and calling sequence for each
routine are discussed 1n the description of the file.

80

%
3
@

J

——

Marinchip 9900 Disc Exxecutive User Guide
5.1. TEXTIN.REL - Read text input file.

Entry points: TEXTIO, TEXTIN
This routine 1is a general subroutine which reads system standard
text files and returns individual lines to the calling program.

All communication with the subroutine 1s through a packet with the
following format:

--
.

.

...

S e e . e e c o o e e e e cc 000000000 ec 00 cceeseceeeeese e eeacsasns
...
..
...

.

The packet must be 1initialised with the READS function code, the
(flle 1index)> of the flle to be read, the address of an I/0 buffer
to be wused to read the file (I/0 buffer address), and 1ts length
(I/0 buffer 1length>. The 1longer the I/0 buffer, the more
efficient the access to the file will be. If the program is to.
run under the Disc Executive, the I/0 buffer must be a multiple of
128 bytes. There are no restrictions under the Network Operating
System. Once the above fields have been set up, the text 1nput
routine 1s initialised by the call:

LI R1,(packet)
BL TEXTIO
{return)

where <(packet) 18 the address of the above packet and (return) 1s
the return point following the call.

To read a 1line from the file, store the address of the buffer

81

Marinchip 38900 Disc Executive User Guide

where the 1line is to be read into (line buffer address), and set
the length of the line buffer into (line buffer length), then use
the call: :

LI R1 ,(packet)
BL TEXTIN

~ DATA (I/0 error)
DATA (end of file)
(return»>

If an I/0 error or end of file 1s encountered, TEXTIN will jump to
the respective address specifled followling the call. If the 1line
1s read normally, control will return following the two DATA
words. The ((length returned to user)) field will be filled with
the 1length of the line stored in the user buffer. This value may
be shorter than the user buffer, but will never be 1longer. The
line stored in the buffer consists of just the text; the trailing
carriage return is not stored. The ((total line length)) field 1s
filled with the ‘total 1length of the lilne just read, and will
differ from the ¢ (length returned to user)) only when the line was
truncated to fit 1into the user buffer.

The TEXTIN routine 1s automatically closed out when the end of
file 1s encountered. No speclal close call 1is required.

TEXTIN is completely reentrant, and may be used to read any number
of text flles concurrently (using one packet for each file, of
course).

The fields in the packet labeled with an asterisk (%) are used by
the TEXTIN routine for 1ts own 1local storage. They must be

provided in the packet, but need not be initialised nor examined
by the user. .

82

Marinchip 9900 Disc Executive User Guide
5.2. TEXTOUT.REL - Write text output file

Entry points: TEXTOO, TEXTOUT, TEXTOC

- The TEXTOUT subroutine creates a system standard text file from

lines generated by the calling program. All communication between
the caller and TEXTOUT is through a packet with the following
format:

...

...
. -
..
. .

In order to use TEXTOUT to generate a text file, the user must set
up the packet with the WRITES function code, the (file 1index)> of
the. file to be written, and the address (I/0 buffer address) and
length (I/0 buffer length) of the buffer to be used to hold data
to be sent to the file. For programs which are to run under the
Disc Executive, the I/0 buffer must be a multiple of 128 bytes.
The Network Operating System imposes no restriction on the length
of the buffer, although under both systems the efficiency
increases as the buffer 1s made larger. Once the packet has been .
initialised with the above values, the following call is made to

open the text output routine: o
LI R1 ,(packet»
BL TEXTOO
{return)

where <(packet) 1s the address of the packet, and (return’ 1s the
return point to the calling program. To write an output 1line ¢to
the flle, the starting address of the line should be stored into
{line buffer address) and the length of the line stored into (line
buffer length), then the following call made:

83

Marinchip 9900 Disc Executive User Guide

LI R1 ,{ packet)
BL TEXTOUT

DATA - (I1/0 error)
({return) -

The data word following call specifies the address where TEXTOUT
will jJump 1f an I/0 error occurs while writing the file. If the
output 1s completed normally, TEXTOUT will return following that
data word.

When all lines have been written to the file, text output must be
closed with the call:

LI R1,<packet)
BL TEXTOC
DATA {I/0 error)
(return)

This call 1s essential, as 1t places the end of file mark at the
end of the text file, and causes the last block of data to be
written to the file.

The TEXTOUT routine 1s fully reentrant and may be used to write
concurrently to as many files as desired (of course, one packet 1is
used for each file).

The fields in the packet labeled with an asterisk (%) are used by

TEXTOUT for local storage. They must be provided in the packet,
but need not be initialised or examined by the user.

84

Marinchip 9900 Dis¢c Executive User Guide
5.3. TRACE.REL - Instruction trace

Ffntry points: TONS, TOFFS$S

The instruction trace package in TRACE.REL 1s a powerful tool for
debugging assembly language programs. The trace 1s activated by
the call:

BLWP TONS

Following the call, each instruction executed will be printed 1in
assembly language format on the user terminal. Register and
memory operands referenced or changed by the instruction will be
edited. Conditional jump instructions will be flagged with an
asterisk (x) 1f they actually Jumped. System calls (JSYS) will be
printed as 1if they were a single instruction (that 1s, the trace
nackage will not attempt to trace into the system). The trace
package will not trace itself.

The trace may be turned off by executing the call:
BLWP TOFFS

Tollowing return from this call, the machine will be "native
aode", and will execute instructions normally.

Néither TONS nor TOFFS change the contents of any workspace
registers or the condition code, so they may be inserted anywhere
in a progran.

The trace package executes instructions interpretively, so 1it 1is
capable of tracing code in ROM as well as 1n read/write memory.
Obviously, when a program 1s executed under the trace 1t executes
tens of thousands of times slower than when belng executed
directly by the machine, so code which has to meet external timing
constraints may not be able to be debugged using the trace. For -
most code, though, the trace should immediately show where a
program is going wrong. i

85

CORTEX USERS GROUP

MDE X USER GUIDE -2

| | by John Walker

| Marinchip Systems

